forked from google-deepmind/learning-to-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convergence_test.py
62 lines (50 loc) · 2 KB
/
convergence_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright 2016 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for L2L TensorFlow implementation."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import meta
import problems
def train(sess, minimize_ops, num_epochs, num_unrolls):
"""L2L training."""
step, update, reset, loss_last, x_last = minimize_ops
for _ in xrange(num_epochs):
sess.run(reset)
for _ in xrange(num_unrolls):
cost, final_x, unused_1, unused_2 = sess.run([loss_last, x_last,
update, step])
return cost, final_x
class L2LTest(tf.test.TestCase):
"""Tests L2L TensorFlow implementation."""
def testSimple(self):
"""Tests L2L applied to simple problem."""
problem = problems.simple()
optimizer = meta.MetaOptimizer(net=dict(
net="CoordinateWiseDeepLSTM",
net_options={
"layers": (),
# Initializing the network to zeros makes learning more stable.
"initializer": "zeros"
}))
minimize_ops = optimizer.meta_minimize(problem, 20, learning_rate=1e-2)
# L2L should solve the simple problem is less than 500 epochs.
with self.test_session() as sess:
sess.run(tf.initialize_all_variables())
cost, _ = train(sess, minimize_ops, 500, 5)
self.assertLess(cost, 1e-5)
if __name__ == "__main__":
tf.test.main()