forked from google-deepmind/learning-to-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess_test.py
102 lines (81 loc) · 2.95 KB
/
preprocess_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright 2016 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for L2L preprocessors."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
import preprocess
class ClampTest(tf.test.TestCase):
"""Tests Clamp module."""
def testShape(self):
shape = [2, 3]
inputs = tf.random_normal(shape)
clamp = preprocess.Clamp(min_value=-1.0, max_value=1.0)
output = clamp(inputs)
self.assertEqual(output.get_shape().as_list(), shape)
def testMin(self):
shape = [100]
inputs = tf.random_normal(shape)
clamp = preprocess.Clamp(min_value=0.0)
output = clamp(inputs)
with self.test_session() as sess:
output_np = sess.run(output)
self.assertTrue(np.all(np.greater_equal(output_np, np.zeros(shape))))
def testMax(self):
shape = [100]
inputs = tf.random_normal(shape)
clamp = preprocess.Clamp(max_value=0.0)
output = clamp(inputs)
with self.test_session() as sess:
output_np = sess.run(output)
self.assertTrue(np.all(np.less_equal(output_np, np.zeros(shape))))
def testMinAndMax(self):
shape = [100]
inputs = tf.random_normal(shape)
clamp = preprocess.Clamp(min_value=0.0, max_value=0.0)
output = clamp(inputs)
with self.test_session() as sess:
output_np = sess.run(output)
self.assertAllEqual(output_np, np.zeros(shape))
class LogAndSignTest(tf.test.TestCase):
"""Tests LogAndSign module."""
def testShape(self):
shape = [2, 3]
inputs = tf.random_normal(shape)
module = preprocess.LogAndSign(k=1)
output = module(inputs)
self.assertEqual(output.get_shape().as_list(), shape[:-1] + [shape[-1] * 2])
def testLogWithOnes(self):
shape = [1]
inputs = tf.ones(shape)
module = preprocess.LogAndSign(k=10)
output = module(inputs)
with self.test_session() as sess:
output_np = sess.run(output)
log_np = output_np[0]
self.assertAlmostEqual(log_np, 0.0)
def testSign(self):
shape = [2, 1]
inputs = tf.random_normal(shape)
module = preprocess.LogAndSign(k=1)
output = module(inputs)
with self.test_session() as sess:
inputs_np, output_np = sess.run([inputs, output])
sign_np = output_np[:, 1:]
self.assertAllEqual(np.sign(sign_np), np.sign(inputs_np))
if __name__ == "__main__":
tf.test.main()