forked from lmb-freiburg/hand3d
-
Notifications
You must be signed in to change notification settings - Fork 1
/
joint-fine-tune-openpose.py
109 lines (92 loc) · 4.18 KB
/
joint-fine-tune-openpose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#
# ColorHandPose3DNetwork - Network for estimating 3D Hand Pose from a single RGB Image
# Copyright (C) 2017 Christian Zimmermann
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
from __future__ import print_function, unicode_literals
import tensorflow as tf
import os
import sys
from nets.ColorHandPose3DNetwork import ColorHandPose3DNetwork
from data.BinaryDbReaderSTB import BinaryDbReaderSTB
from openpose.OpenposeSTBReader import OpenposeSTBReader
from utils.general import LearningRateScheduler, hand_size
# import pdb
# training parameters
train_para = {'lr': [1e-5, 1e-6],
'lr_iter': [40000],
'max_iter': 80000,
'show_loss_freq': 100,
'snapshot_freq': 5000,
'org_weight': './weights/posenet3d-dome-hs.pickle',
'ft_snapshot_dir': 'snapshots_joint_dome_hs_jft_openpose'}
# train_para = {'lr': [1e-5, 1e-6],
# 'lr_iter': [40000],
# 'max_iter': 80000,
# 'show_loss_freq': 100,
# 'snapshot_freq': 5000,
# 'org_weight': './weights/posenet3d-my.pickle',
# 'ft_snapshot_dir': 'snapshots_joint_my_jft_openpose',
# }
# get dataset
dataset = BinaryDbReaderSTB(mode='training',
batch_size=8, shuffle=False, hand_crop=False, use_wrist_coord=False)
openpose_dataset = OpenposeSTBReader(mode='training', batch_size=8, shuffle=False, hand_crop=True, use_wrist_coord=False)
# build network graph
data = dataset.get()
openpose_data = openpose_dataset.get()
# build network
net = ColorHandPose3DNetwork()
# feed trough network
scoremap_pooled = tf.nn.avg_pool(openpose_data['scoremap'], ksize=[1, 8, 8, 1], strides=[1, 8, 8, 1], padding='SAME')
evaluation = tf.placeholder_with_default(True, shape=())
_, coord3d_pred, R = net._inference_pose3d(scoremap_pooled, openpose_data['hand_side'], evaluation, train=True)
# Start TF
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.4)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
sess.run(tf.global_variables_initializer())
tf.train.start_queue_runners(sess=sess)
# Loss
loss = 0.0
loss += tf.reduce_mean(tf.square(coord3d_pred - data['keypoint_xyz21_can']))
loss += tf.reduce_mean(tf.square(R - data['rot_mat']))
# Solver
global_step = tf.Variable(0, trainable=False, name="global_step")
lr_scheduler = LearningRateScheduler(values=train_para['lr'], steps=train_para['lr_iter'])
lr = lr_scheduler.get_lr(global_step)
opt = tf.train.AdamOptimizer(lr)
train_op = opt.minimize(loss)
# init weights
sess.run(tf.global_variables_initializer())
net.init(sess, weight_files=['./weights/handsegnet-rhd.pickle', train_para['org_weight']], exclude_var_list=['HandSegNet', 'PoseNet2D'])
saver = tf.train.Saver(max_to_keep=None)
# snapshot dir
if not os.path.exists(train_para['ft_snapshot_dir']):
os.mkdir(train_para['ft_snapshot_dir'])
print('Created snapshot dir:', train_para['ft_snapshot_dir'])
# Training loop
print('Starting to train ...')
for i in range(train_para['max_iter']):
_, loss_v, openpose_key, key = sess.run([train_op, loss, openpose_data['key'], data['key']])
if (i % train_para['show_loss_freq']) == 0:
print('Iteration %d\t Loss %.1e' % (i, loss_v))
sys.stdout.flush()
if (i % train_para['snapshot_freq']) == 0:
saver.save(sess, "%s/model" % train_para['ft_snapshot_dir'], global_step=i)
print('Saved a snapshot.')
sys.stdout.flush()
assert (key == openpose_key).all()
print('Training finished. Saving final snapshot.')
saver.save(sess, "%s/model" % train_para['ft_snapshot_dir'], global_step=train_para['max_iter'])