-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathload_model.py
126 lines (107 loc) · 4.75 KB
/
load_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
'''
File: load_model.py
Project: image2katex
File Created: Wednesday, 26th December 2018 12:40:54 pm
Author: xiaofeng ([email protected])
-----
Last Modified: Wednesday, 26th December 2018 12:45:11 pm
Modified By: xiaofeng ([email protected]>)
-----
2018.06 - 2018 Latex Math, Latex Math
'''
from __future__ import print_function
import argparse
import collections
import os
import shutil
import sys
from pprint import pprint
import numpy as np
from PIL import Image
import config as cfg
import init_logger
from models.seq2seq_model import Seq2SeqAttModel
from utils.TextUtil import simplify
from utils.general import get_img_list, run
from utils.process_image import (TIMEOUT, crop_image, generate_image_data,
image_process, padding_img, resize_img)
from utils.render_image import latex_to_image
from utils.util import render_to_html
""" Load model for the webserver """
class LoadModel(object):
def __init__(self, ConfClass, _config, _vocab, logger, pretrainde=None,trainable=False):
self.ConfClass=ConfClass
self.config = _config
self.vocab = _vocab
self.trainable = trainable
self.logger = logger
self.pretrainde=pretrainde
self.target_height = self.vocab.target_height
self.bucket_size = self.vocab.bucket_size
self.setup()
def setup(self,):
""" Load model """
self.Model = Seq2SeqAttModel(config=self.config, vocab=self.vocab,
logger=self.logger, trainable=self.trainable)
self.Model.build_inference()
_ = self.Model.restore_session(pretrainde=self.pretrainde)
self.temp_path = os.path.abspath(self.config.predict.temp_path)
self.preprocess_dir = os.path.abspath(self.config.predict.preprocess_dir)
self.render_path = os.path.abspath(self.config.predict.render_path)
self.ConfClass.create_dir(
[self.temp_path, self.preprocess_dir, self.render_path])
def run_im2latex(self, image_path):
""" if there is no predict_image given, then input the image_path"""
image_path = os.path.abspath(image_path)
assert os.path.exists(image_path), 'Error, the {:s} not exist'.format(image_path)
assert os.path.isfile(image_path), 'Input {image_path} must be file'.format(image_path)
root, img_name = os.path.split(image_path)
if img_name.split('.')[-1] == 'pdf':
convert_cmd = "magick convert -density {} -quality {} {} {}".format(
200, 100, os.path.join(root, img_name), os.path.join(
self.preprocess_dir, "{}.png".format(img_name.split('.')[0])))
run(cmd=convert_cmd, timeout_sec=TIMEOUT)
else:
src_dir = image_path
dst_dir = os.path.join(self.preprocess_dir, img_name)
shutil.copy(src=src_dir, dst=dst_dir)
# preprocess the image
_img_name_no_ext = img_name.split('.')[0]
# process image to the uniform style
# binary,adaptive-filter,find-existed-pixel and crop it
# resize image based targetd given by the training dataset
image_process_flage = image_process(
input_dir=self.preprocess_dir, preprocess_dir=self.preprocess_dir,
render_out=self.render_path, file_name=img_name, target_height=self.target_height,
bucket_size=self.bucket_size, _logger=self.logger)
if not image_process_flage:
pass
# convert processed image to the numpy data
image_data = generate_image_data(os.path.join(
self.preprocess_dir, _img_name_no_ext + '.png'), self.logger, False)
# predict the image based image data
_predict_latex_list = self.Model.predict_single_img(image_data)
_LatexWant = _predict_latex_list[0]
# get the directory for the pwd file
pwd = os.path.abspath(os.getcwd())
# switch the directory to the render path
if self.render_path not in pwd:
os.chdir(self.render_path)
render_flag = latex_to_image(_LatexWant, _img_name_no_ext, self.logger)
# switch directory to the pwd
os.chdir(pwd)
if render_flag:
param_croped = (
os.path.join(self.render_path, _img_name_no_ext+'.png'),
self.render_path, _img_name_no_ext+'.png', self.logger)
_ = crop_image(param_croped)
temp = collections.OrderedDict()
temp['process_img'] = _img_name_no_ext+'.png'
temp['predict_latex'] = _LatexWant
temp['render_dir'] = _img_name_no_ext + '.png' if os.path.exists(
os.path.join(self.render_path, _img_name_no_ext + '.png')) else None
return temp
# if __name__ == "__main__":
# while True:
# p = LoadModel()
# p.run_im2latex()