-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreduce1d_reproducer.py
58 lines (47 loc) · 2.02 KB
/
reduce1d_reproducer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import triton
import triton.language as tl
import pytest
from somemodule import to_triton, to_numpy, numpy_random, check_type_supported # Replace 'some_module' with actual module names
dtypes_with_bfloat16 = ['bfloat16'] # Add other data types if needed
num_ctas_list = [1] # Define your num_ctas_list values
device = 'cuda' # Assuming CUDA device
@pytest.mark.parametrize("op, dtype_str, shape",
[(op, dtype, shape) for op in ['min']
for dtype in dtypes_with_bfloat16
for shape in [32, 64, 128, 512]])
@pytest.mark.parametrize("num_ctas", num_ctas_list)
def test_reduce1d(op, dtype_str, shape, num_ctas, device):
check_type_supported(dtype_str, device) # Checks if dtype is supported on the device
# Triton kernel
@triton.jit
def kernel(X, Z, BLOCK: tl.constexpr):
x = tl.load(X + tl.arange(0, BLOCK))
z = tl.min(x, axis=0)
tl.store(Z, z)
# Input
rs = np.random.RandomState(17)
x = numpy_random((shape,), dtype_str=dtype_str, rs=rs)
# NumPy result
if dtype_str == 'bfloat16':
z_ref = np.min(x).astype(np.float32)
z_ref = (z_ref.view('uint32') & np.uint32(0xffff0000)).view('float32')
z_tri_dtype_str = 'bfloat16'
else:
z_ref = np.min(x).astype(dtype_str)
# Triton result
x_tri = to_triton(x, device=device)
if dtype_str == 'bfloat16':
z_tri = to_triton(np.random.random((1,)).astype(np.float32), device=device, dst_type='bfloat16')
else:
z_tri = to_triton(np.random.random((1,)).astype(dtype_str), device=device)
assert shape is not None and isinstance(shape, int), "shape must be a non-None integer"
kernel[(1,)](x_tri, z_tri, BLOCK=shape, num_ctas=num_ctas)
z_tri = to_numpy(z_tri)
# Compare
if dtype_str == 'bfloat16':
np.testing.assert_allclose(z_ref, z_tri, rtol=1e-3, atol=1e-3)
else:
np.testing.assert_equal(z_ref, z_tri)
# Example run
test_reduce1d('min', 'int32', 128, 1, 'cuda')