forked from guxinqian/AP3D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test-all.py
192 lines (153 loc) · 6.52 KB
/
test-all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from __future__ import print_function, absolute_import
import os
import gc
import sys
import time
import math
import h5py
import scipy
import datetime
import argparse
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
import models
import transforms.spatial_transforms as ST
import transforms.temporal_transforms as TT
import tools.data_manager as data_manager
from tools.video_loader import VideoDataset
from tools.utils import Logger
from tools.eval_metrics import evaluate
parser = argparse.ArgumentParser(description='Test AP3D using all frames')
# Datasets
parser.add_argument('--root', type=str, default='/home/guxinqian/data/')
parser.add_argument('-d', '--dataset', type=str, default='mars',
choices=data_manager.get_names())
parser.add_argument('-j', '--workers', default=4, type=int)
parser.add_argument('--height', type=int, default=256)
parser.add_argument('--width', type=int, default=128)
# Augment
parser.add_argument('--test_frames', default=32, type=int,
help='frames per clip for test')
# Architecture
parser.add_argument('-a', '--arch', type=str, default='ap3dres50',
help="ap3dres50, ap3dnlres50")
# Miscs
parser.add_argument('--resume', type=str, default='', metavar='PATH')
parser.add_argument('--test_epochs', default=[240], nargs='+', type=int)
parser.add_argument('--distance', type=str, default='cosine',
help="euclidean or cosine")
parser.add_argument('--gpu', default='0, 1', type=str,
help='gpu device ids for CUDA_VISIBLE_DEVICES')
args = parser.parse_args()
def main():
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
use_gpu = torch.cuda.is_available()
sys.stdout = Logger(osp.join(args.resume, 'log_test.txt'))
print("==========\nArgs:{}\n==========".format(args))
print("Initializing dataset {}".format(args.dataset))
dataset = data_manager.init_dataset(name=args.dataset, root=args.root)
# Data augmentation
spatial_transform_test = ST.Compose([
ST.Scale((args.height, args.width), interpolation=3),
ST.ToTensor(),
ST.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
temporal_transform_test = None
pin_memory = True if use_gpu else False
queryloader = DataLoader(
VideoDataset(dataset.query, spatial_transform=spatial_transform_test, temporal_transform=temporal_transform_test),
batch_size=1, shuffle=False, num_workers=0,
pin_memory=pin_memory, drop_last=False)
galleryloader = DataLoader(
VideoDataset(dataset.gallery, spatial_transform=spatial_transform_test, temporal_transform=temporal_transform_test),
batch_size=1, shuffle=False, num_workers=0,
pin_memory=pin_memory, drop_last=False)
print("Initializing model: {}".format(args.arch))
model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids)
print("Model size: {:.5f}M".format(sum(p.numel() for p in model.parameters())/1000000.0))
for epoch in args.test_epochs:
model_path = osp.join(args.resume, 'checkpoint_ep'+str(epoch)+'.pth.tar')
print("Loading checkpoint from '{}'".format(model_path))
checkpoint = torch.load(model_path)
model.load_state_dict(checkpoint['state_dict'])
if use_gpu: model = model.cuda()
print("Evaluate")
with torch.no_grad():
test(model, queryloader, galleryloader, use_gpu)
def extract(model, vids, use_gpu):
n, c, f, h, w = vids.size()
assert(n == 1)
if use_gpu:
feat = torch.cuda.FloatTensor()
else:
feat = torch.FloatTensor()
for i in range(math.ceil(f/args.test_frames)):
clip = vids[:, :, i*args.test_frames:(i+1)*args.test_frames, :, :]
if use_gpu:
clip = clip.cuda()
output = model(clip)
feat = torch.cat((feat, output), 1)
feat = feat.mean(1)
feat = model.bn(feat)
feat = feat.data.cpu()
return feat
def test(model, queryloader, galleryloader, use_gpu):
since = time.time()
model.eval()
qf, q_pids, q_camids = [], [], []
for batch_idx, (vids, pids, camids) in enumerate(queryloader):
if (batch_idx + 1) % 1000==0:
print("{}/{}".format(batch_idx+1, len(queryloader)))
qf.append(extract(model, vids, use_gpu).squeeze())
q_pids.extend(pids)
q_camids.extend(camids)
qf = torch.stack(qf)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print("Extracted features for query set, obtained {} matrix".format(qf.shape))
gf, g_pids, g_camids = [], [], []
for batch_idx, (vids, pids, camids) in enumerate(galleryloader):
if (batch_idx + 1) % 1000==0:
print("{}/{}".format(batch_idx+1, len(galleryloader)))
gf.append(extract(model, vids, use_gpu).squeeze())
g_pids.extend(pids)
g_camids.extend(camids)
gf = torch.stack(gf)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
if args.dataset == 'mars':
# gallery set must contain query set, otherwise 140 query imgs will not have ground truth.
gf = torch.cat((qf, gf), 0)
g_pids = np.append(q_pids, g_pids)
g_camids = np.append(q_camids, g_camids)
print("Extracted features for gallery set, obtained {} matrix".format(gf.shape))
time_elapsed = time.time() - since
print('Extracting features complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print("Computing distance matrix")
m, n = qf.size(0), gf.size(0)
distmat = torch.zeros((m,n))
if args.distance == 'euclidean':
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
for i in range(m):
distmat[i:i+1].addmm_(1, -2, qf[i:i+1], gf.t())
else:
q_norm = torch.norm(qf, p=2, dim=1, keepdim=True)
g_norm = torch.norm(gf, p=2, dim=1, keepdim=True)
qf = qf.div(q_norm.expand_as(qf))
gf = gf.div(g_norm.expand_as(gf))
for i in range(m):
distmat[i] = - torch.mm(qf[i:i+1], gf.t())
distmat = distmat.numpy()
print("Computing CMC and mAP")
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids)
print("Results ----------")
print('top1:{:.1%} top5:{:.1%} top10:{:.1%} mAP:{:.1%}'.format(cmc[0],cmc[4],cmc[9],mAP))
print("------------------")
return cmc[0]
if __name__ == '__main__':
main()