-
Notifications
You must be signed in to change notification settings - Fork 83
/
train.py
284 lines (240 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
'''
Single-GPU training code
'''
import argparse
import math
from datetime import datetime
import numpy as np
import tensorflow as tf
import socket
import importlib
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
import flying_things_dataset
import pickle
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--model', default='model_concat_upsa', help='Model name [default: model_concat_upsa]')
parser.add_argument('--data', default='data_preprocessing/data_processed_maxcut_35_20k_2k_8192', help='Dataset directory [default: data_preprocessing/data_processed_maxcut_35_20k_2k_8192]')
parser.add_argument('--log_dir', default='log_train', help='Log dir [default: log_train]')
parser.add_argument('--num_point', type=int, default=2048, help='Point Number [default: 2048]')
parser.add_argument('--max_epoch', type=int, default=151, help='Epoch to run [default: 151]')
parser.add_argument('--batch_size', type=int, default=16, help='Batch Size during training [default: 16]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')
FLAGS = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.gpu)
EPOCH_CNT = 0
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
DATA = FLAGS.data
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(BASE_DIR, FLAGS.model+'.py')
LOG_DIR = FLAGS.log_dir
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp %s %s' % (__file__, LOG_DIR)) # bkp of train procedure
os.system('cp %s %s' % ('flying_things_dataset.py', LOG_DIR)) # bkp of dataset file
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
TRAIN_DATASET = flying_things_dataset.SceneflowDataset(DATA, npoints=NUM_POINT)
TEST_DATASET = flying_things_dataset.SceneflowDataset(DATA, npoints=NUM_POINT, train=False)
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learing_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def train():
with tf.Graph().as_default():
with tf.device('/gpu:'+str(GPU_INDEX)):
pointclouds_pl, labels_pl, masks_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT)
is_training_pl = tf.placeholder(tf.bool, shape=())
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
batch = tf.Variable(0)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
print("--- Get model and loss")
# Get model and loss
pred, end_points = MODEL.get_model(pointclouds_pl, is_training_pl, bn_decay=bn_decay)
loss = MODEL.get_loss(pred, labels_pl, masks_pl, end_points)
tf.summary.scalar('loss', loss)
print("--- Get training operator")
# Get training operator
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=batch)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'), sess.graph)
# Init variables
init = tf.global_variables_initializer()
sess.run(init)
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'masks_pl': masks_pl,
'is_training_pl': is_training_pl,
'pred': pred,
'loss': loss,
'train_op': train_op,
'merged': merged,
'step': batch,
'end_points': end_points}
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
train_one_epoch(sess, ops, train_writer)
eval_one_epoch(sess, ops, test_writer)
# Save the variables to disk.
if epoch % 10 == 0:
save_path = saver.save(sess, os.path.join(LOG_DIR, "model.ckpt"))
log_string("Model saved in file: %s" % save_path)
def get_batch(dataset, idxs, start_idx, end_idx):
bsize = end_idx-start_idx
batch_data = np.zeros((bsize, NUM_POINT*2, 6))
batch_label = np.zeros((bsize, NUM_POINT, 3))
batch_mask = np.zeros((bsize, NUM_POINT))
# shuffle idx to change point order (change FPS behavior)
shuffle_idx = np.arange(NUM_POINT)
np.random.shuffle(shuffle_idx)
for i in range(bsize):
pc1, pc2, color1, color2, flow, mask1 = dataset[idxs[i+start_idx]]
# move pc1 to center
pc1_center = np.mean(pc1, 0)
pc1 -= pc1_center
pc2 -= pc1_center
batch_data[i,:NUM_POINT,:3] = pc1[shuffle_idx]
batch_data[i,:NUM_POINT,3:] = color1[shuffle_idx]
batch_data[i,NUM_POINT:,:3] = pc2[shuffle_idx]
batch_data[i,NUM_POINT:,3:] = color2[shuffle_idx]
batch_label[i] = flow[shuffle_idx]
batch_mask[i] = mask1[shuffle_idx]
return batch_data, batch_label, batch_mask
def train_one_epoch(sess, ops, train_writer):
""" ops: dict mapping from string to tf ops """
is_training = True
# Shuffle train samples
train_idxs = np.arange(0, len(TRAIN_DATASET))
np.random.shuffle(train_idxs)
num_batches = len(TRAIN_DATASET) // BATCH_SIZE
log_string(str(datetime.now()))
loss_sum = 0
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
batch_data, batch_label, batch_mask = get_batch(TRAIN_DATASET, train_idxs, start_idx, end_idx)
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['labels_pl']: batch_label,
ops['masks_pl']: batch_mask,
ops['is_training_pl']: is_training,}
summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['loss'], ops['pred']], feed_dict=feed_dict)
train_writer.add_summary(summary, step)
loss_sum += loss_val
if (batch_idx+1)%10 == 0:
log_string(' -- %03d / %03d --' % (batch_idx+1, num_batches))
log_string('mean loss: %f' % (loss_sum / 10))
loss_sum = 0
def eval_one_epoch(sess, ops, test_writer):
""" ops: dict mapping from string to tf ops """
global EPOCH_CNT
is_training = False
test_idxs = np.arange(0, len(TEST_DATASET))
# Test on all data: last batch might be smaller than BATCH_SIZE
num_batches = (len(TEST_DATASET)+BATCH_SIZE-1) // BATCH_SIZE
loss_sum = 0
loss_sum_l2 = 0
log_string(str(datetime.now()))
log_string('---- EPOCH %03d EVALUATION ----'%(EPOCH_CNT))
batch_data = np.zeros((BATCH_SIZE, NUM_POINT*2, 3))
batch_label = np.zeros((BATCH_SIZE, NUM_POINT, 3))
batch_mask = np.zeros((BATCH_SIZE, NUM_POINT))
for batch_idx in range(num_batches):
if batch_idx %20==0:
log_string('%03d/%03d'%(batch_idx, num_batches))
start_idx = batch_idx * BATCH_SIZE
end_idx = min(len(TEST_DATASET), (batch_idx+1) * BATCH_SIZE)
cur_batch_size = end_idx-start_idx
cur_batch_data, cur_batch_label, cur_batch_mask = get_batch(TEST_DATASET, test_idxs, start_idx, end_idx)
if cur_batch_size == BATCH_SIZE:
batch_data = cur_batch_data
batch_label = cur_batch_label
batch_mask = cur_batch_mask
else:
batch_data[0:cur_batch_size] = cur_batch_data
batch_label[0:cur_batch_size] = cur_batch_label
batch_mask[0:cur_batch_size] = cur_batch_mask
# ---------------------------------------------------------------------
# ---- INFERENCE BELOW ----
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['labels_pl']: batch_label,
ops['masks_pl']: batch_mask,
ops['is_training_pl']: is_training}
summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['loss'], ops['pred']], feed_dict=feed_dict)
test_writer.add_summary(summary, step)
# ---- INFERENCE ABOVE ----
# ---------------------------------------------------------------------
tmp = np.sum((pred_val - batch_label)**2, 2) / 2.0
loss_val_np = np.mean(batch_mask * tmp)
if cur_batch_size==BATCH_SIZE:
loss_sum += loss_val
loss_sum_l2 += loss_val_np
# Dump some results
if batch_idx == 0:
with open('test_results.pkl', 'wb') as fp:
pickle.dump([batch_data, batch_label, pred_val], fp)
log_string('eval mean loss: %f' % (loss_sum / float(len(TEST_DATASET)/BATCH_SIZE)))
log_string('eval mean loss: %f' % (loss_sum_l2 / float(len(TEST_DATASET)/BATCH_SIZE)))
EPOCH_CNT += 1
return loss_sum/float(len(TEST_DATASET)/BATCH_SIZE)
if __name__ == "__main__":
log_string('pid: %s'%(str(os.getpid())))
train()
LOG_FOUT.close()