-
Notifications
You must be signed in to change notification settings - Fork 139
/
train.py
120 lines (110 loc) · 4.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from numpy.random import seed
seed(12345)
from tensorflow import set_random_seed
set_random_seed(1234)
import os
import random
import numpy as np
import skimage
import matplotlib.pyplot as plt
from keras.models import *
from keras.layers import *
from keras.optimizers import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, ReduceLROnPlateau, TensorBoard
from keras import backend as keras
from utils import DataGenerator
from unet3 import *
def main():
goTrain()
def goTrain():
# input image dimensions
params = {'batch_size':1,
'dim':(128,128,128),
'n_channels':1,
'shuffle': True}
seismPathT = "./data/train/seis/"
faultPathT = "./data/train/fault/"
seismPathV = "./data/validation/seis/"
faultPathV = "./data/validation/fault/"
train_ID = range(200)
valid_ID = range(20)
train_generator = DataGenerator(dpath=seismPathT,fpath=faultPathT,
data_IDs=train_ID,**params)
valid_generator = DataGenerator(dpath=seismPathV,fpath=faultPathV,
data_IDs=valid_ID,**params)
model = unet(input_size=(None, None, None,1))
model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy',
metrics=['accuracy'])
model.summary()
# checkpoint
filepath="check1/fseg-{epoch:02d}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc',
verbose=1, save_best_only=False, mode='max')
logging = TrainValTensorBoard()
#reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2,
# patience=20, min_lr=1e-8)
callbacks_list = [checkpoint, logging]
print("data prepared, ready to train!")
# Fit the model
history=model.fit_generator(generator=train_generator,
validation_data=valid_generator,epochs=100,callbacks=callbacks_list,verbose=1)
model.save('check1/fseg.hdf5')
showHistory(history)
def showHistory(history):
# list all data in history
print(history.history.keys())
fig = plt.figure(figsize=(10,6))
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('Model accuracy',fontsize=20)
plt.ylabel('Accuracy',fontsize=20)
plt.xlabel('Epoch',fontsize=20)
plt.legend(['train', 'test'], loc='center right',fontsize=20)
plt.tick_params(axis='both', which='major', labelsize=18)
plt.tick_params(axis='both', which='minor', labelsize=18)
plt.show()
# summarize history for loss
fig = plt.figure(figsize=(10,6))
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss',fontsize=20)
plt.ylabel('Loss',fontsize=20)
plt.xlabel('Epoch',fontsize=20)
plt.legend(['train', 'test'], loc='center right',fontsize=20)
plt.tick_params(axis='both', which='major', labelsize=18)
plt.tick_params(axis='both', which='minor', labelsize=18)
plt.show()
class TrainValTensorBoard(TensorBoard):
def __init__(self, log_dir='./log1', **kwargs):
# Make the original `TensorBoard` log to a subdirectory 'training'
training_log_dir = os.path.join(log_dir, 'training')
super(TrainValTensorBoard, self).__init__(training_log_dir, **kwargs)
# Log the validation metrics to a separate subdirectory
self.val_log_dir = os.path.join(log_dir, 'validation')
def set_model(self, model):
# Setup writer for validation metrics
self.val_writer = tf.summary.FileWriter(self.val_log_dir)
super(TrainValTensorBoard, self).set_model(model)
def on_epoch_end(self, epoch, logs=None):
# Pop the validation logs and handle them separately with
# `self.val_writer`. Also rename the keys so that they can
# be plotted on the same figure with the training metrics
logs = logs or {}
val_logs = {k.replace('val_', ''): v for k, v in logs.items() if k.startswith('val_')}
for name, value in val_logs.items():
summary = tf.Summary()
summary_value = summary.value.add()
summary_value.simple_value = value.item()
summary_value.tag = name
self.val_writer.add_summary(summary, epoch)
self.val_writer.flush()
# Pass the remaining logs to `TensorBoard.on_epoch_end`
logs = {k: v for k, v in logs.items() if not k.startswith('val_')}
logs.update({'lr': keras.eval(self.model.optimizer.lr)})
super(TrainValTensorBoard, self).on_epoch_end(epoch, logs)
def on_train_end(self, logs=None):
super(TrainValTensorBoard, self).on_train_end(logs)
self.val_writer.close()
if __name__ == '__main__':
main()