-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFCN32.py
executable file
·430 lines (384 loc) · 16.5 KB
/
FCN32.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import torch
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.models as models
from torchvision import transforms, utils
import os
import os.path as osp
import argparse
# from __future__ import print_function
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser(description="Save or load models.")
parser.add_argument('-e', '--epoch', type=int, default=10,
help='Number of iteration over the dataset to train')
parser.add_argument('-b', '--batch_size', type=int, default=16,
metavar='N', help='mini-batch size (default: 128)')
parser.add_argument('-tb', '--test_batch_size', type=int, default=16,
metavar='N', help='test mini-batch size (default: 16)')
parser.add_argument('-lr', '--learning_rate', default=0.0001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--disable_cuda', action='store_true', default=False,
help='Disable CUDA')
parser.add_argument('--disable_training', action='store_true', default=False,
help='Disable training')
parser.add_argument('--enable_testing', action='store_true', default=False,
help='Enable testing')
parser.add_argument('--log_interval', type=int, default=20, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('-s', '--save', type=str, help='save the model weights')
parser.add_argument('-l', '--load', type=str, help='load the model weights')
args = parser.parse_args()
args.cuda = not args.disable_cuda and torch.cuda.is_available()
class_num = 21
class VOC12(Dataset):
def __init__(self, root_dir, txt_file, input_transform=None, target_transform=None):
self.name_list = self.__readfile__(txt_file)
self.root_dir = root_dir
self.input_transform = input_transform
self.target_transform = target_transform
def __len__(self):
return len(self.name_list)
def __getitem__(self, idx):
image_path = os.path.join(self.root_dir, 'JPEGImages',self.name_list[idx]+".jpg")
label_path = os.path.join(self.root_dir, 'SegmentationClass',self.name_list[idx]+".png")
with open(image_path, 'rb') as f:
image = Image.open(f).convert('RGB')
with open(label_path, 'rb') as f:
label = Image.open(f).convert('P')
# print(np.shape(image))
# print(np.shape(label))
if self.input_transform is not None:
image = self.input_transform(image)
if self.target_transform is not None:
label = self.target_transform(label)
label = np.array(label, dtype=np.int32)
label[label==255] = -1
label = torch.from_numpy(label).long()
sample = {'image': image, 'label': label}
return sample
def __readfile__(self, txt_file):
name_list = []
with open(txt_file, 'r') as f:
for line in f:
data = line.strip()
data = data.split(' ')
name_list.append(data[0])
return name_list
def show_pair(self, idx):
print('length of the dataset: ', len(self))
sample = self[idx]
img1 = np.transpose(sample['image'].numpy(), (1, 2, 0))
img2 = np.transpose(sample['label'].numpy(), (1, 2, 0))
# print(np.shape(img1))
# print(np.shape(img2))
plt.subplot(1, 2, 1)
plt.imshow(img1, interpolation='nearest')
plt.subplot(1, 2, 2)
plt.imshow(img2[:,:,0], interpolation='nearest')
plt.show()
plt.tight_layout()
plt.axis('off')
def visualization(self, img, lbl, lp): # TODO
# jm: img transpose to PIL.image, lbl doesn't change
img = np.array(transforms.ToPILImage()(img))
img = img.astype(np.uint8)
lbl = lbl.numpy().astype(np.uint8)
lp = lp.numpy().astype(np.uint8)
plt.subplot(131)
plt.imshow(img, interpolation='nearest')
plt.subplot(132)
plt.imshow(lbl[:,:], interpolation='nearest', vmin = 0, vmax = 24)
plt.subplot(133)
plt.imshow(lp[:,:], interpolation='nearest', vmin = 0, vmax = 24)
plt.show()
plt.tight_layout()
plt.axis('off')
def cross_entropy2d(input, target, weight=None, size_average=True):
# input: (n, c, h, w), target: (n, h, w)
n, c, h, w = input.size()
# log_p: (n, c, h, w)
log_p = F.log_softmax(input)
# log_p: (n*h*w, c)
log_p = log_p.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c)
log_p = log_p[target.view(n, h, w, 1).repeat(1, 1, 1, c) >= 0]
log_p = log_p.view(-1, c)
# target: (n*h*w,)
mask = target >= 0
target = target[mask]
loss = F.nll_loss(log_p, target, weight=weight, size_average=False)
if size_average:
loss /= mask.data.sum()
return loss
def get_upsampling_weight(in_channels, out_channels, kernel_size):
"""Make a 2D bilinear kernel suitable for upsampling"""
factor = (kernel_size + 1) // 2
if kernel_size % 2 == 1:
center = factor - 1
else:
center = factor - 0.5
og = np.ogrid[:kernel_size, :kernel_size]
filt = (1 - abs(og[0] - center) / factor) * \
(1 - abs(og[1] - center) / factor)
weight = np.zeros((in_channels, out_channels, kernel_size, kernel_size),
dtype=np.float64)
weight[range(in_channels), range(out_channels), :, :] = filt
return torch.from_numpy(weight).float()
class fcn_32(nn.Module):
def __init__(self, class_num=21):
super(fcn_32, self).__init__()
# conv1
self.conv1_1 = nn.Conv2d(3, 64, 3, padding=100)
self.relu1_1 = nn.ReLU(inplace=True)
self.conv1_2 = nn.Conv2d(64, 64, 3, padding=1)
self.relu1_2 = nn.ReLU(inplace=True)
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) # 1/2
# conv2
self.conv2_1 = nn.Conv2d(64, 128, 3, padding=1)
self.relu2_1 = nn.ReLU(inplace=True)
self.conv2_2 = nn.Conv2d(128, 128, 3, padding=1)
self.relu2_2 = nn.ReLU(inplace=True)
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) # 1/4
# conv3
self.conv3_1 = nn.Conv2d(128, 256, 3, padding=1)
self.relu3_1 = nn.ReLU(inplace=True)
self.conv3_2 = nn.Conv2d(256, 256, 3, padding=1)
self.relu3_2 = nn.ReLU(inplace=True)
self.conv3_3 = nn.Conv2d(256, 256, 3, padding=1)
self.relu3_3 = nn.ReLU(inplace=True)
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) # 1/8
# conv4
self.conv4_1 = nn.Conv2d(256, 512, 3, padding=1)
self.relu4_1 = nn.ReLU(inplace=True)
self.conv4_2 = nn.Conv2d(512, 512, 3, padding=1)
self.relu4_2 = nn.ReLU(inplace=True)
self.conv4_3 = nn.Conv2d(512, 512, 3, padding=1)
self.relu4_3 = nn.ReLU(inplace=True)
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) # 1/16
# conv5
self.conv5_1 = nn.Conv2d(512, 512, 3, padding=1)
self.relu5_1 = nn.ReLU(inplace=True)
self.conv5_2 = nn.Conv2d(512, 512, 3, padding=1)
self.relu5_2 = nn.ReLU(inplace=True)
self.conv5_3 = nn.Conv2d(512, 512, 3, padding=1)
self.relu5_3 = nn.ReLU(inplace=True)
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True) # 1/32
# fc6
self.fc6 = nn.Conv2d(512, 4096, 7)
self.relu6 = nn.ReLU(inplace=True)
self.drop6 = nn.Dropout2d()
# fc7
self.fc7 = nn.Conv2d(4096, 4096, 1)
self.relu7 = nn.ReLU(inplace=True)
self.drop7 = nn.Dropout2d()
self.score_fr = nn.Conv2d(4096, class_num, 1)
self.upscore = nn.ConvTranspose2d(class_num, class_num, 64, stride=32, bias=False)
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.weight.data.zero_()
if m.bias is not None:
m.bias.data.zero_()
if isinstance(m, nn.ConvTranspose2d):
assert m.kernel_size[0] == m.kernel_size[1]
initial_weight = get_upsampling_weight(
m.in_channels, m.out_channels, m.kernel_size[0])
m.weight.data.copy_(initial_weight)
def forward(self, x):
h = x
h = self.relu1_1(self.conv1_1(h))
h = self.relu1_2(self.conv1_2(h))
h = self.pool1(h)
h = self.relu2_1(self.conv2_1(h))
h = self.relu2_2(self.conv2_2(h))
h = self.pool2(h)
h = self.relu3_1(self.conv3_1(h))
h = self.relu3_2(self.conv3_2(h))
h = self.relu3_3(self.conv3_3(h))
h = self.pool3(h)
h = self.relu4_1(self.conv4_1(h))
h = self.relu4_2(self.conv4_2(h))
h = self.relu4_3(self.conv4_3(h))
h = self.pool4(h)
h = self.relu5_1(self.conv5_1(h))
h = self.relu5_2(self.conv5_2(h))
h = self.relu5_3(self.conv5_3(h))
h = self.pool5(h)
h = self.relu6(self.fc6(h))
h = self.drop6(h)
h = self.relu7(self.fc7(h))
h = self.drop7(h)
h = self.score_fr(h)
h = self.upscore(h)
h = h[:, :, 31:31 + x.size()[2], 31:31 + x.size()[3]].contiguous()
return h
def transfer_from_vgg16(self, vgg16):
features = [
self.conv1_1, self.relu1_1,
self.conv1_2, self.relu1_2,
self.pool1,
self.conv2_1, self.relu2_1,
self.conv2_2, self.relu2_2,
self.pool2,
self.conv3_1, self.relu3_1,
self.conv3_2, self.relu3_2,
self.conv3_3, self.relu3_3,
self.pool3,
self.conv4_1, self.relu4_1,
self.conv4_2, self.relu4_2,
self.conv4_3, self.relu4_3,
self.pool4,
self.conv5_1, self.relu5_1,
self.conv5_2, self.relu5_2,
self.conv5_3, self.relu5_3,
self.pool5,
]
for l1, l2 in zip(vgg16.features, features):
if isinstance(l1, nn.Conv2d) and isinstance(l2, nn.Conv2d):
assert l1.weight.size() == l2.weight.size()
assert l1.bias.size() == l2.bias.size()
l2.weight.data = l1.weight.data
l2.bias.data = l1.bias.data
for i, name in zip([0, 3], ['fc6', 'fc7']):
l1 = vgg16.classifier[i]
l2 = getattr(self, name)
l2.weight.data = l1.weight.data.view(l2.weight.size())
l2.bias.data = l1.bias.data.view(l2.bias.size())
def train(epoch):
model.train()
# TODO: is ADAM really the best?
# TODO: maybe adjust learning rate in training? http://pytorch.org/docs/master/optim.html#how-to-adjust-learning-rate
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
plot_x = []
plot_y = []
for i, data in enumerate(train_loader):
images = data['image']
labels = data['label']
images, labels = Variable(images), Variable(labels)
if args.cuda:
images, labels = images.cuda(), labels.cuda()
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
output = model(images)
# labels = labels.type('torch.LongTensor').cuda()
loss = cross_entropy2d(output, labels) # TODO: find out the difference between this and F.cross_entropy. Seems identical.
loss /= len(output) # normalizing when training in batches
plot_x.append(len(plot_x)+len(train_loader)*epoch + 1)
plot_y.append(loss.data[0])
if np.isnan(float(loss.data[0])):
raise ValueError('loss is nan while training')
loss.backward()
optimizer.step()
if i % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, i * len(images), len(train_loader.dataset),
100. * i / len(train_loader), loss.data[0]))
if (i == (len(train_loader) - 1)):
training_loss = 'FCN32_trainloss.txt'
with open(training_loss, 'a') as f:
for i in range(0, len(plot_x)):
f.write(" ".join([str(plot_x[i]), str(plot_y[i])]))
f.write('\n')
# evaluation tools
def _fast_hist(label_true, label_pred, n_class):
mask = (label_true >= 0) & (label_true < n_class)
hist = np.bincount(n_class * label_true[mask].astype(int) + label_pred[mask], minlength=n_class ** 2).reshape(n_class, n_class)
return hist
def label_accuracy_score(label_trues, label_preds, n_class=21):
"""Returns accuracy score evaluation result.
- overall accuracy
- mean accuracy
- mean IU
- fwavacc
"""
hist = np.zeros((n_class, n_class))
for lt, lp in zip(label_trues, label_preds):
hist += _fast_hist(lt.flatten(), lp.flatten(), n_class)
acc = np.diag(hist).sum() / hist.sum()
acc_cls = np.diag(hist) / hist.sum(axis=1)
acc_cls = np.nanmean(acc_cls)
iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist))
mean_iu = np.nanmean(iu)
freq = hist.sum(axis=1) / hist.sum()
fwavacc = (freq[freq > 0] * iu[freq > 0]).sum()
return acc, acc_cls, mean_iu, fwavacc
def test(test_loader):
model.eval()
label_trues, label_preds = [], []
print('Start testing')
for i, data in enumerate(test_loader):
images = data['image']
labels = data['label']
images, labels = Variable(images, volatile=True), Variable(labels)
# print(images.size(), labels.size())
if args.cuda:
images, labels = images.cuda(), labels.cuda()
output = model(images)
imgs = images.data.cpu()
# lbl_pred = output.data.max(1)[1].cpu().numpy()[:, :, :]
lbl_pred = output.data.max(1)[1].cpu()
lbl_true = labels.data.cpu()
# if i==0:
# print("bincount pre:",np.bincount(lbl_pred.numpy().flatten()))
# print("bincount true:",np.bincount(lbl_true.type('torch.LongTensor').numpy().flatten()))
for img, lt, lp in zip(imgs, lbl_true, lbl_pred):
# test_loader.dataset.visualization(img, lt, lp)
lt = lt.numpy()
lp = lp.numpy()
label_trues.append(lt)
label_preds.append(lp)
#print(np.shape(label_trues), np.shape(label_preds))
metrics = label_accuracy_score(label_trues, label_preds, n_class=class_num )
metrics = np.array(metrics)
metrics *= 100
print('''\
Accuracy: {0}
Accuracy Class: {1}
Mean IU: {2}
FWAV Accuracy: {3}'''.format(*metrics))
if __name__ == "__main__":
trans_image = transforms.Compose([transforms.Scale((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
trans_target = transforms.Compose([transforms.Scale((224, 224))])
train_data_root_dir = './VOC2012'
train_data_txt_dir = './VOC2012/ImageSets/Segmentation/train.txt'
train_set = VOC12(train_data_root_dir, train_data_txt_dir, input_transform=trans_image, target_transform=trans_target)
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=2)
test_data_root_dir = './VOC2012'
test_data_txt_dir = './VOC2012/ImageSets/Segmentation/val.txt'
test_set = VOC12(test_data_root_dir, test_data_txt_dir, input_transform=trans_image, target_transform=trans_target)
test_loader = DataLoader(test_set, batch_size=args.test_batch_size, shuffle=True, num_workers=2)
# train_set.show_pair(10)
torch.manual_seed(1)
# load pretrained vgg16 network
vgg16 = models.vgg16(pretrained=True)
# fcn_32 instance
model = fcn_32(class_num=class_num)
# copy params from vgg16
model.transfer_from_vgg16(vgg16)
if args.cuda:
torch.cuda.manual_seed(1)
model.cuda()
if args.load:
load_path = args.load
print('Loading weights from {}'.format(load_path))
model.load_state_dict(torch.load(load_path))
for epoch in range(0, args.epoch): # loop over the dataset multiple times
if not args.disable_training:
train(epoch)
if args.enable_testing:
print('Train_set testing result:')
test(train_loader)
print('Test_set testing result:')
test(test_loader)
if args.save is not None:
save_path = args.save
print('Saving weights at {}'.format(save_path))
torch.save(model.state_dict(), save_path)