forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
picodet_openvino.cpp
209 lines (184 loc) · 7.08 KB
/
picodet_openvino.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// reference from https://github.com/RangiLyu/nanodet/tree/main/demo_openvino
#include "picodet_openvino.h"
inline float fast_exp(float x) {
union {
uint32_t i;
float f;
} v{};
v.i = (1 << 23) * (1.4426950409 * x + 126.93490512f);
return v.f;
}
inline float sigmoid(float x) { return 1.0f / (1.0f + fast_exp(-x)); }
template <typename _Tp>
int activation_function_softmax(const _Tp *src, _Tp *dst, int length) {
const _Tp alpha = *std::max_element(src, src + length);
_Tp denominator{0};
for (int i = 0; i < length; ++i) {
dst[i] = fast_exp(src[i] - alpha);
denominator += dst[i];
}
for (int i = 0; i < length; ++i) {
dst[i] /= denominator;
}
return 0;
}
PicoDet::PicoDet(const char *model_path) {
InferenceEngine::Core ie;
InferenceEngine::CNNNetwork model = ie.ReadNetwork(model_path);
// prepare input settings
InferenceEngine::InputsDataMap inputs_map(model.getInputsInfo());
input_name_ = inputs_map.begin()->first;
InferenceEngine::InputInfo::Ptr input_info = inputs_map.begin()->second;
// prepare output settings
InferenceEngine::OutputsDataMap outputs_map(model.getOutputsInfo());
for (auto &output_info : outputs_map) {
output_info.second->setPrecision(InferenceEngine::Precision::FP32);
}
// get network
network_ = ie.LoadNetwork(model, "CPU");
infer_request_ = network_.CreateInferRequest();
}
PicoDet::~PicoDet() {}
void PicoDet::preprocess(cv::Mat &image, InferenceEngine::Blob::Ptr &blob) {
int img_w = image.cols;
int img_h = image.rows;
int channels = 3;
InferenceEngine::MemoryBlob::Ptr mblob =
InferenceEngine::as<InferenceEngine::MemoryBlob>(blob);
if (!mblob) {
THROW_IE_EXCEPTION
<< "We expect blob to be inherited from MemoryBlob in matU8ToBlob, "
<< "but by fact we were not able to cast inputBlob to MemoryBlob";
}
auto mblobHolder = mblob->wmap();
float *blob_data = mblobHolder.as<float *>();
for (size_t c = 0; c < channels; c++) {
for (size_t h = 0; h < img_h; h++) {
for (size_t w = 0; w < img_w; w++) {
blob_data[c * img_w * img_h + h * img_w + w] =
(float)image.at<cv::Vec3b>(h, w)[c];
}
}
}
}
std::vector<BoxInfo> PicoDet::detect(cv::Mat image, float score_threshold,
float nms_threshold) {
InferenceEngine::Blob::Ptr input_blob = infer_request_.GetBlob(input_name_);
preprocess(image, input_blob);
// do inference
infer_request_.Infer();
// get output
std::vector<std::vector<BoxInfo>> results;
results.resize(this->num_class_);
for (const auto &head_info : this->heads_info_) {
const InferenceEngine::Blob::Ptr dis_pred_blob =
infer_request_.GetBlob(head_info.dis_layer);
const InferenceEngine::Blob::Ptr cls_pred_blob =
infer_request_.GetBlob(head_info.cls_layer);
auto mdis_pred =
InferenceEngine::as<InferenceEngine::MemoryBlob>(dis_pred_blob);
auto mdis_pred_holder = mdis_pred->rmap();
const float *dis_pred = mdis_pred_holder.as<const float *>();
auto mcls_pred =
InferenceEngine::as<InferenceEngine::MemoryBlob>(cls_pred_blob);
auto mcls_pred_holder = mcls_pred->rmap();
const float *cls_pred = mcls_pred_holder.as<const float *>();
this->decode_infer(cls_pred, dis_pred, head_info.stride, score_threshold,
results);
}
std::vector<BoxInfo> dets;
for (int i = 0; i < (int)results.size(); i++) {
this->nms(results[i], nms_threshold);
for (auto &box : results[i]) {
dets.push_back(box);
}
}
return dets;
}
void PicoDet::decode_infer(const float *&cls_pred, const float *&dis_pred,
int stride, float threshold,
std::vector<std::vector<BoxInfo>> &results) {
int feature_h = ceil((float)input_size_ / stride);
int feature_w = ceil((float)input_size_ / stride);
for (int idx = 0; idx < feature_h * feature_w; idx++) {
int row = idx / feature_w;
int col = idx % feature_w;
float score = 0;
int cur_label = 0;
for (int label = 0; label < num_class_; label++) {
if (cls_pred[idx * num_class_ + label] > score) {
score = cls_pred[idx * num_class_ + label];
cur_label = label;
}
}
if (score > threshold) {
const float *bbox_pred = dis_pred + idx * (reg_max_ + 1) * 4;
results[cur_label].push_back(
this->disPred2Bbox(bbox_pred, cur_label, score, col, row, stride));
}
}
}
BoxInfo PicoDet::disPred2Bbox(const float *&dfl_det, int label, float score,
int x, int y, int stride) {
float ct_x = (x + 0.5) * stride;
float ct_y = (y + 0.5) * stride;
std::vector<float> dis_pred;
dis_pred.resize(4);
for (int i = 0; i < 4; i++) {
float dis = 0;
float *dis_after_sm = new float[reg_max_ + 1];
activation_function_softmax(dfl_det + i * (reg_max_ + 1), dis_after_sm,
reg_max_ + 1);
for (int j = 0; j < reg_max_ + 1; j++) {
dis += j * dis_after_sm[j];
}
dis *= stride;
dis_pred[i] = dis;
delete[] dis_after_sm;
}
float xmin = (std::max)(ct_x - dis_pred[0], .0f);
float ymin = (std::max)(ct_y - dis_pred[1], .0f);
float xmax = (std::min)(ct_x + dis_pred[2], (float)this->input_size_);
float ymax = (std::min)(ct_y + dis_pred[3], (float)this->input_size_);
return BoxInfo{xmin, ymin, xmax, ymax, score, label};
}
void PicoDet::nms(std::vector<BoxInfo> &input_boxes, float NMS_THRESH) {
std::sort(input_boxes.begin(), input_boxes.end(),
[](BoxInfo a, BoxInfo b) { return a.score > b.score; });
std::vector<float> vArea(input_boxes.size());
for (int i = 0; i < int(input_boxes.size()); ++i) {
vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1) *
(input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
}
for (int i = 0; i < int(input_boxes.size()); ++i) {
for (int j = i + 1; j < int(input_boxes.size());) {
float xx1 = (std::max)(input_boxes[i].x1, input_boxes[j].x1);
float yy1 = (std::max)(input_boxes[i].y1, input_boxes[j].y1);
float xx2 = (std::min)(input_boxes[i].x2, input_boxes[j].x2);
float yy2 = (std::min)(input_boxes[i].y2, input_boxes[j].y2);
float w = (std::max)(float(0), xx2 - xx1 + 1);
float h = (std::max)(float(0), yy2 - yy1 + 1);
float inter = w * h;
float ovr = inter / (vArea[i] + vArea[j] - inter);
if (ovr >= NMS_THRESH) {
input_boxes.erase(input_boxes.begin() + j);
vArea.erase(vArea.begin() + j);
} else {
j++;
}
}
}
}