Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ImportError: cannot import name 'U2NET' from 'model' #371

Open
tzktz opened this issue Dec 1, 2023 · 2 comments
Open

ImportError: cannot import name 'U2NET' from 'model' #371

tzktz opened this issue Dec 1, 2023 · 2 comments

Comments

@tzktz
Copy link

tzktz commented Dec 1, 2023

can't import u2net model from model location..can u fix it..thanks in advance!!!

@xuebinqin
Copy link
Owner

xuebinqin commented Dec 1, 2023 via email

@tzktz
Copy link
Author

tzktz commented Dec 2, 2023

@xuebinqin hi bro..
here is my file

import os
from skimage import io, transform
from skimage.filters import gaussian
import torch
import torchvision
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms  # , utils
# import torch.optim as optim

import numpy as np
from PIL import Image
import glob

from data_loader import RescaleT
from data_loader import ToTensor
from data_loader import ToTensorLab
from data_loader import SalObjDataset

from model import U2NET  # full size version 173.6 MB
from model import U2NETP  # small version u2net 4.7 MB

import argparse


# normalize the predicted SOD probability map
def normPRED(d):
    ma = torch.max(d)
    mi = torch.min(d)

    dn = (d - mi) / (ma - mi)

    return dn


def save_output(image_name, pred, d_dir, sigma=2, alpha=0.5):
    predict = pred
    predict = predict.squeeze()
    predict_np = predict.cpu().data.numpy()

    image = io.imread(image_name)
    pd = transform.resize(predict_np, image.shape[0:2], order=2)
    pd = pd / (np.amax(pd) + 1e-8) * 255
    pd = pd[:, :, np.newaxis]

    print(image.shape)
    print(pd.shape)

    ## fuse the orignal portrait image and the portraits into one composite image
    ## 1. use gaussian filter to blur the orginal image
    sigma = sigma
    image = gaussian(image, sigma=sigma, preserve_range=True)

    ## 2. fuse these orignal image and the portrait with certain weight: alpha
    alpha = alpha
    im_comp = image * alpha + pd * (1 - alpha)

    print(im_comp.shape)

    img_name = image_name.split(os.sep)[-1]
    aaa = img_name.split(".")
    bbb = aaa[0:-1]
    imidx = bbb[0]
    for i in range(1, len(bbb)):
        imidx = imidx + "." + bbb[i]
    io.imsave(d_dir + '/' + imidx + '_sigma_' + str(sigma) + '_alpha_' + str(alpha) + '_composite.png', im_comp)


def main():
    parser = argparse.ArgumentParser(description="image and portrait composite")
    parser.add_argument('-s', action='store', dest='sigma')
    parser.add_argument('-a', action='store', dest='alpha')
    args = parser.parse_args()
    print(args.sigma)
    print(args.alpha)
    print("--------------------")

    # --------- 1. get image path and name ---------
    model_name = 'u2net_portrait'  # u2netp

    image_dir = 'D:\\image folder'
    prediction_dir = 'D:\\image folder'
    if (not os.path.exists(prediction_dir)):
        os.mkdir(prediction_dir)

    model_dir = 'D:\4K Video Downloader\u2net_portrait.pth'

    img_name_list = glob.glob(image_dir + '/*')
    print("Number of images: ", len(img_name_list))

    # --------- 2. dataloader ---------
    # 1. dataloader
    test_salobj_dataset = SalObjDataset(img_name_list=img_name_list,
                                        lbl_name_list=[],
                                        transform=transforms.Compose([RescaleT(512),
                                                                      ToTensorLab(flag=0)])
                                        )
    test_salobj_dataloader = DataLoader(test_salobj_dataset,
                                        batch_size=1,
                                        shuffle=False,
                                        num_workers=1)

    # --------- 3. model define ---------

    print("...load U2NET---173.6 MB")
    net = U2NET(3, 1)

    net.load_state_dict(torch.load(model_dir))
    if torch.cuda.is_available():
        net.cuda()
    net.eval()

    # --------- 4. inference for each image ---------
    for i_test, data_test in enumerate(test_salobj_dataloader):

        print("inferencing:", img_name_list[i_test].split(os.sep)[-1])

        inputs_test = data_test['image']
        inputs_test = inputs_test.type(torch.FloatTensor)

        if torch.cuda.is_available():
            inputs_test = Variable(inputs_test.cuda())
        else:
            inputs_test = Variable(inputs_test)

        d1, d2, d3, d4, d5, d6, d7 = net(inputs_test)

        # normalization
        pred = 1.0 - d1[:, 0, :, :]
        pred = normPRED(pred)

        # save results to test_results folder
        save_output(img_name_list[i_test], pred, prediction_dir, sigma=float(args.sigma), alpha=float(args.alpha))

        del d1, d2, d3, d4, d5, d6, d7


if __name__ == "__main__":
    main()

when try to run above code face below error..

  from model import U2NET  # full size version 173.6 MB
    ^^^^^^^^^^^^^^^^^^^^^^^
ImportError: cannot import name 'U2NET' from 'model' (unknown location)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants