-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathPolicyValueNet.py
363 lines (296 loc) · 13.7 KB
/
PolicyValueNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# -*- coding: utf-8 -*-
"""
An implementation of the policyValueNet in PyTorch (tested in PyTorch 0.3.0 and 0.3.1)
"""
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
def set_learning_rate(optimizer, lr):
"""Sets the learning rate to the given value"""
for param_group in optimizer.param_groups:
param_group['lr'] = lr
class ConvBlock(nn.Module):
'''Convolutional Block'''
def __init__(self, in_channels=4, out_channels=256):
super(ConvBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.LeakyReLU()
def forward(self, x):
out = self.conv(x)
out = self.bn(out)
out = self.relu(out)
return out
class ResidualBlock(nn.Module):
'''Residual Block'''
def __init__(self, out_channels=128): # input_channels=output_channels
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu1 = nn.LeakyReLU()
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(out_channels)
self.relu2 = nn.LeakyReLU()
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
out += x # skip connection that adds the input to the block
out = self.relu2(out)
return out
class ResNet(nn.Module):
'''One Block ResNet According to the paper'''
def __init__(self, board_width, board_height, in_channels=4, out_channels=128):
super(ResNet, self).__init__()
self.board_width = board_width
self.board_height = board_height
# common layers
self.conv_layer = ConvBlock(in_channels, out_channels)
self.res_layer = self.make_residual_layers(1, out_channels) # in paper, blocks=19 or 39
# policy head: action policy layers
self.act_filters = 2
self.act_conv1 = nn.Conv2d(out_channels, self.act_filters, kernel_size=1, stride=1) #2 filters
self.act_bn1 = nn.BatchNorm2d(self.act_filters)
self.act_relu1 = nn.LeakyReLU()
self.act_fc1 = nn.Linear(self.act_filters * board_width * board_height, board_width * board_height)
self.act_softmax = nn.Softmax(dim=1)
# value head: state value layers
self.val_filters = 1
self.val_hidden_num = 128
self.val_conv1 = nn.Conv2d(out_channels, self.val_filters , kernel_size=1)
self.val_bn1 = nn.BatchNorm2d(self.val_filters)
self.val_relu1 = nn.LeakyReLU()
self.val_fc1 = nn.Linear(self.val_filters * board_width * board_height, self.val_hidden_num)
self.val_relu2 = nn.LeakyReLU()
self.val_fc2 = nn.Linear(self.val_hidden_num, 1)
self.val_tanh = nn.Tanh()
def make_residual_layers(self, blocks=2, out_channels=256):
layers = []
for i in range(blocks):
layers.append(ResidualBlock(out_channels))
return nn.Sequential(*layers)
def forward(self, state):
# common layer
x = self.conv_layer(state)
x = self.res_layer(x)
# policy head
x_act = self.act_conv1(x)
x_act = self.act_bn1(x_act)
x_act = self.act_relu1(x_act)
x_act = x_act.view(-1, self.act_filters * self.board_width * self.board_height)#flatten
policy_logits = self.act_fc1(x_act)
policy_output = self.act_softmax(policy_logits)
# value head
x_val = self.val_conv1(x)
x_val = self.val_bn1(x_val)
x_val = self.val_relu1(x_val)
x_val = x_val.view(-1, self.val_filters * self.board_width * self.board_height)
x_val = self.val_fc1(x_val)
x_val = self.val_relu2(x_val)
x_val = self.val_fc2(x_val)
value_output = self.val_tanh(x_val)
return policy_logits, policy_output, value_output
def __str__(self):
return "resnet"
class ConvNet(nn.Module):
"""Conv Layers"""
def __init__(self, board_width, board_height):
super(ConvNet, self).__init__()
self.board_width = board_width
self.board_height = board_height
# common layers
n = 1
common_kernel_size = 2 * n + 1
self.conv1 = nn.Conv2d(4, 32, kernel_size=common_kernel_size, padding=n)
self.conv2 = nn.Conv2d(32, 64, kernel_size=common_kernel_size, padding=n)
self.conv3 = nn.Conv2d(64, 128, kernel_size=common_kernel_size, padding=n)
# action policy layers
self.act_conv1 = nn.Conv2d(128, 4, kernel_size=1)
self.act_fc1 = nn.Linear(4 * board_width * board_height, board_width * board_height)
# state value layers
self.val_conv1 = nn.Conv2d(128, 2, kernel_size=1)
self.val_fc1 = nn.Linear(2 * board_width * board_height, 64)
self.val_fc2 = nn.Linear(64, 1)
def forward(self, state_input):
# common layers
x = F.relu(self.conv1(state_input))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
# action policy layers
x_act = F.relu(self.act_conv1(x))
x_act = x_act.view(-1, 4 * self.board_width * self.board_height)
policy_logits = self.act_fc1(x_act)
policy_output = F.softmax(policy_logits, dim=1) # use the api to process the zero probability situation and etc.
# state value layers
x_val = F.relu(self.val_conv1(x))
x_val = x_val.view(-1, 2 * self.board_width * self.board_height)
x_val = F.relu(self.val_fc1(x_val))
value_output = F.tanh(self.val_fc2(x_val))
return policy_logits, policy_output, value_output
def __str__(self):
return "conv_net"
class FeedForwardNet(nn.Module):
'''Feed Forward Network'''
def __init__(self, board_width, board_height):
super(FeedForwardNet, self).__init__()
self.board_width = board_width
self.board_height = board_height
# common layers
self.fc1 = nn.Linear(4 * board_width * board_height, board_width * board_height)
# action policy layers
self.act_fc1 = nn.Linear(board_width * board_height, board_width * board_height)
# state value layers
self.val_fc1 = nn.Linear(board_width * board_height, 1)
def forward(self, state_input):
# common layers
x = F.relu(self.fc1(state_input.view(-1, 4 * self.board_width * self.board_height)))
# action policy layers
policy_logits = F.relu(self.act_fc1(x))
policy_output = F.softmax(policy_logits, dim=1) # use the api to process the zero probability situation and etc.
# state value layers
value_output = F.tanh(self.val_fc1(x))
return policy_logits, policy_output, value_output
class ResNet2(nn.Module):
'''Two Block ResNet According to the paper'''
def __init__(self, board_width, board_height, in_channels=4, out_channels=128):
super(ResNet2, self).__init__()
self.board_width = board_width
self.board_height = board_height
# common layers
self.conv_layer = ConvBlock(in_channels, out_channels)
self.res_layer = self.make_residual_layers(2, out_channels) # in AlphaGoZero paper: blocks=19 or 39
# policy head: action policy layers
self.act_filters = 2
self.act_conv1 = nn.Conv2d(out_channels, self.act_filters, kernel_size=1, stride=1) # 2 filters
self.act_bn1 = nn.BatchNorm2d(self.act_filters)
self.act_relu1 = nn.ReLU()
self.act_fc1 = nn.Linear(self.act_filters * board_width * board_height, board_width * board_height)
self.act_softmax = nn.Softmax(dim=1)
# value head: state value layers
self.val_filters = 2
self.val_hidden_num = 256
self.val_conv1 = nn.Conv2d(out_channels, self.val_filters , kernel_size=1)
self.val_bn1 = nn.BatchNorm2d(self.val_filters)
self.val_relu1 = nn.ReLU()
self.val_fc1 = nn.Linear(self.val_filters * board_width * board_height, self.val_hidden_num)
self.val_relu2 = nn.ReLU()
self.val_fc2 = nn.Linear(self.val_hidden_num, 1)
self.val_tanh = nn.Tanh()
def make_residual_layers(self, blocks=2, out_channels=256):
layers = []
for i in range(blocks):
layers.append(ResidualBlock(out_channels))
return nn.Sequential(*layers)
def forward(self, state):
# common layer
x = self.conv_layer(state)
x = self.res_layer(x)
# policy head
x_act = self.act_conv1(x)
x_act = self.act_bn1(x_act)
x_act = self.act_relu1(x_act)
x_act = x_act.view(-1, self.act_filters * self.board_width * self.board_height)#flatten
policy_logits = self.act_fc1(x_act)
policy_output = self.act_softmax(policy_logits)
# value head
x_val = self.val_conv1(x)
x_val = self.val_bn1(x_val)
x_val = self.val_relu1(x_val)
x_val = x_val.view(-1, self.val_filters * self.board_width * self.board_height)
x_val = self.val_fc1(x_val)
x_val = self.val_relu2(x_val)
x_val = self.val_fc2(x_val)
value_output = self.val_tanh(x_val)
return policy_logits, policy_output, value_output
def __str__(self):
return "resnet"
"""policy-value network wrapper """
class PolicyValueNet():
def __init__(self, board_width, board_height, net_params=None, Network=None, use_gpu=False):
if Network is None: Network = ResNet
self.use_gpu = use_gpu
self.board_width = board_width
self.board_height = board_height
self.l2_const = 1e-4 # coef of l2 penalty
# the policy value net module
if self.use_gpu:
self.policy_value_net = Network(board_width, board_height).cuda()
else:
self.policy_value_net = Network(board_width, board_height)
self.optimizer = optim.Adam(self.policy_value_net.parameters(), weight_decay=self.l2_const)
if net_params:
self.policy_value_net.load_state_dict(net_params)
def predict_many(self, state_batch):
"""
input: a batch of states
output: a batch of action probabilities and state values
"""
if self.use_gpu:
state_batch = Variable(torch.FloatTensor(state_batch).cuda())
_, policy_output, value_output = self.policy_value_net(state_batch)
return policy_output.data.cpu().numpy(), value_output.data.cpu().numpy()
else:
state_batch = Variable(torch.FloatTensor(state_batch))
_, policy_output, value_output = self.policy_value_net(state_batch)
return policy_output.data.numpy(), value_output.data.numpy()
def predict(self, board):
"""
input: board:a single sample
output: a list of (action, probability) tuples for each available action and the score of the board state
"""
legal_positions = board.availables
# (batch, channels, width, height)
current_state = np.array(board.current_state().reshape(-1, 4, self.board_width, self.board_height))
if self.use_gpu:
_, policy_output, value_output = self.policy_value_net(Variable(torch.from_numpy(current_state)).cuda().float())
act_probs = policy_output.data.cpu().numpy().flatten()
else:
# probs:(batch_size, width*height); value:(batch_size, 1)
_, policy_output, value_output = self.policy_value_net(Variable(torch.from_numpy(current_state)).float())
act_probs = policy_output.data.numpy().flatten()
act_probs = zip(legal_positions, act_probs[legal_positions])
return act_probs, value_output.data[0][0]
def fit(self, state_batch, mcts_probs, winner_batch, lr):
"""perform a training step"""
# wrap in Variable
if self.use_gpu:
state_batch = Variable(torch.FloatTensor(state_batch).cuda())
mcts_probs = Variable(torch.FloatTensor(mcts_probs).cuda())
winner_batch = Variable(torch.FloatTensor(winner_batch).cuda())
else:
state_batch = Variable(torch.FloatTensor(state_batch))
mcts_probs = Variable(torch.FloatTensor(mcts_probs))
winner_batch = Variable(torch.FloatTensor(winner_batch))
# zero the parameter gradients
self.optimizer.zero_grad()
# set learning rate
set_learning_rate(self.optimizer, lr)
# forward
policy_logits,_, value_output = self.policy_value_net(state_batch)
# define the loss = (z - v)^2 - pi^T * log(p) + c||theta||^2 (Note: the L2 penalty is incorporated in optimizer)
value_loss = F.mse_loss(value_output.view(-1), winner_batch)
policy_loss = -torch.mean(torch.sum(mcts_probs * F.log_softmax(policy_logits,dim=1), 1))
loss = value_loss + policy_loss
# backward and optimize
loss.backward()
self.optimizer.step()
# calc policy entropy, for monitoring only,- sum (p*logp)
log_policy_output = F.log_softmax(policy_logits, dim=1) # # use the api to process the zero probability situation and etc.
entropy = -torch.mean(torch.sum(torch.exp(log_policy_output) * log_policy_output, 1))
# entropy is equivalent to policy loss.
return {
'combined_loss':loss.data[0],
'policy_loss': policy_loss.data[0],
'value_loss':value_loss.data[0],
'entropy': entropy.data[0]
}
def get_policy_param(self):
net_params = self.policy_value_net.state_dict()
return net_params
def __str__(self):
return self.policy_value_net.__str__()