-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
627 lines (562 loc) · 38.2 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
import logging
import os
import sys
import time
def init_logging(log_file, stdout=False):
formatter = logging.Formatter('%(asctime)s [%(levelname)s] %(module)s: %(message)s',
datefmt='%m/%d/%Y %H:%M:%S' )
print('Making log output file: %s' % log_file)
print(log_file[: log_file.rfind(os.sep)])
if not os.path.exists(log_file[: log_file.rfind(os.sep)]):
os.makedirs(log_file[: log_file.rfind(os.sep)])
fh = logging.FileHandler(log_file)
fh.setFormatter(formatter)
fh.setLevel(logging.INFO)
logger = logging.getLogger()
logger.addHandler(fh)
logger.setLevel(logging.INFO)
if stdout:
ch = logging.StreamHandler(sys.stdout)
ch.setFormatter(formatter)
ch.setLevel(logging.INFO)
logger.addHandler(ch)
return logger
def model_opts(parser):
"""
These options are passed to the construction of the model.
Be careful with these as they will be used during translation.
"""
# Embedding Options
parser.add_argument('-word_vec_size', type=int, default=100,
help='Word embedding for both.')
#parser.add_argument('-position_encoding', action='store_true',
# help='Use a sin to mark relative words positions.')
parser.add_argument('-share_embeddings', default=True, action='store_true',
help="""Share the word embeddings between encoder
and decoder.""")
parser.add_argument('-use_target_encoder', action='store_true',
help="Use target decoder")
# RNN Options
parser.add_argument('-encoder_type', type=str, default='rnn',
choices=['rnn', 'brnn', 'mean', 'transformer', 'cnn'],
help="""Type of encoder layer to use.""")
parser.add_argument('-decoder_type', type=str, default='rnn',
choices=['rnn', 'transformer', 'cnn'],
help='Type of decoder layer to use.')
parser.add_argument('-enc_layers', type=int, default=1,
help='Number of layers in the encoder')
parser.add_argument('-dec_layers', type=int, default=1,
help='Number of layers in the decoder')
parser.add_argument('-encoder_size', type=int, default=150,
help='Size of encoder hidden states')
parser.add_argument('-decoder_size', type=int, default=300,
help='Size of decoder hidden states')
parser.add_argument('-target_encoder_size', type=int, default=64,
help='Size of target encoder hidden states')
parser.add_argument('-source_representation_queue_size', type=int, default=128,
help='Size of queue for storing the encoder representation for training the target encoder')
parser.add_argument('-source_representation_sample_size', type=int, default=32,
help='Sample size of encoder representation for training the target encoder.')
parser.add_argument('-dropout', type=float, default=0.1,
help="Dropout probability; applied in LSTM stacks.")
# parser.add_argument('-input_feed', type=int, default=1,
# help="""Feed the context vector at each time step as
# additional input (via concatenation with the word
# embeddings) to the decoder.""")
#parser.add_argument('-rnn_type', type=str, default='GRU',
# choices=['LSTM', 'GRU'],
# help="""The gate type to use in the RNNs""")
# parser.add_argument('-residual', action="store_true",
# help="Add residual connections between RNN layers.")
#parser.add_argument('-input_feeding', action="store_true",
# help="Apply input feeding or not. Feed the updated hidden vector (after attention)"
# "as new hidden vector to the decoder (Luong et al. 2015). "
# "Feed the context vector at each time step after normal attention"
# "as additional input (via concatenation with the word"
# "embeddings) to the decoder.")
parser.add_argument('-bidirectional', default=True,
action = "store_true",
help="whether the encoder is bidirectional")
parser.add_argument('-bridge', type=str, default='copy',
choices=['copy', 'dense', 'dense_nonlinear', 'none'],
help="An additional layer between the encoder and the decoder")
# Attention options
parser.add_argument('-attn_mode', type=str, default='concat',
choices=['general', 'concat'],
help="""The attention type to use:
dot or general (Luong) or concat (Bahdanau)""")
#parser.add_argument('-attention_mode', type=str, default='concat',
# choices=['dot', 'general', 'concat'],
# help="""The attention type to use:
# dot or general (Luong) or concat (Bahdanau)""")
# Genenerator and loss options.
parser.add_argument('-copy_attention', action="store_true",
help='Train a copy model.')
#parser.add_argument('-copy_mode', type=str, default='concat',
# choices=['dot', 'general', 'concat'],
# help="""The attention type to use: dot or general (Luong) or concat (Bahdanau)""")
#parser.add_argument('-copy_input_feeding', action="store_true",
# help="Feed the context vector at each time step after copy attention"
# "as additional input (via concatenation with the word"
# "embeddings) to the decoder.")
#parser.add_argument('-reuse_copy_attn', action="store_true",
# help="Reuse standard attention for copy (see See et al.)")
#parser.add_argument('-copy_gate', action="store_true",
# help="A gate controling the flow from generative model and copy model (see See et al.)")
parser.add_argument('-coverage_attn', action="store_true",
help='Train a coverage attention layer.')
parser.add_argument('-review_attn', action="store_true",
help='Train a review attention layer')
parser.add_argument('-lambda_coverage', type=float, default=1,
help='Lambda value for coverage by See et al.')
parser.add_argument('-coverage_loss', action="store_true", default=False,
help='whether to include coverage loss')
parser.add_argument('-orthogonal_loss', action="store_true", default=False,
help='whether to include orthogonal loss')
parser.add_argument('-lambda_orthogonal', type=float, default=0.03,
help='Lambda value for the orthogonal loss by Yuan et al.')
parser.add_argument('-lambda_target_encoder', type=float, default=0.03,
help='Lambda value for the target encoder loss by Yuan et al.')
parser.add_argument('-separate_present_absent', action="store_true", default=False,
help='whether to separate present keyphrase predictions and absnet keyphrase predictions as two sub-tasks')
parser.add_argument('-manager_mode', type=int, default=1, choices=[1],
help='Only effective in separate_present_absent. 1: two trainable vectors as the goal vectors;')
parser.add_argument('-goal_vector_size', type=int, default=16,
help='size of goal vector')
parser.add_argument('-goal_vector_mode', type=int, default=0, choices=[0, 1, 2],
help='Only effective in separate_present_absent. 0: no goal vector; 1: goal vector act as an extra input to the decoder; 2: goal vector act as an extra input to p_gen')
parser.add_argument('-title_guided', action="store_true", default=False,
help='whether to use title-guided encoder')
# parser.add_argument('-context_gate', type=str, default=None,
# choices=['source', 'target', 'both'],
# help="""Type of context gate to use.
# Do not select for no context gate by Tu:2017:TACL.""")
# group.add_argument('-lambda_coverage', type=float, default=1,
# help='Lambda value for coverage.')
# Cascading model options
#parser.add_argument('-cascading_model', action="store_true", help='Train a copy model.')
def vocab_opts(parser):
# Dictionary Options
parser.add_argument('-vocab_size', type=int, default=50002,
help="Size of the source vocabulary")
# for copy model
parser.add_argument('-max_unk_words', type=int, default=1000,
help="Maximum number of unknown words the model supports (mainly for masking in loss)")
parser.add_argument('-words_min_frequency', type=int, default=0)
# Options most relevant to summarization
parser.add_argument('-dynamic_dict', default=True,
action='store_true', help="Create dynamic dictionaries (for copy)")
def train_opts(parser):
# Model loading/saving options
parser.add_argument('-data', required=True,
help="""Path prefix to the "train.one2one.pt" and
"train.one2many.pt" file path from preprocess.py""")
parser.add_argument('-vocab', required=True,
help="""Path prefix to the "vocab.pt"
file path from preprocess.py""")
parser.add_argument('-custom_data_filename_suffix', action="store_true",
help='')
parser.add_argument('-custom_vocab_filename_suffix', action="store_true",
help='')
parser.add_argument('-vocab_filename_suffix', default='',
help='')
parser.add_argument('-data_filename_suffix', default='',
help='')
parser.add_argument('-save_model', default='model',
help="""Model filename (the model will be saved as
<save_model>_epochN_PPL.pt where PPL is the
validation perplexity""")
parser.add_argument('-train_from', default='', type=str,
help="""If training from a checkpoint then this is the
path to the pretrained model's state_dict.""")
# GPU
parser.add_argument('-gpuid', default=0, type=int,
help="Use CUDA on the selected device.")
#parser.add_argument('-gpuid', default=[0], nargs='+', type=int,
# help="Use CUDA on the listed devices.")
parser.add_argument('-seed', type=int, default=9527,
help="""Random seed used for the experiments
reproducibility.""")
# Init options
parser.add_argument('-epochs', type=int, default=20,
help='Number of training epochs')
parser.add_argument('-start_epoch', type=int, default=1,
help='The epoch from which to start')
parser.add_argument('-param_init', type=float, default=0.1,
help="""Parameters are initialized over uniform distribution
with support (-param_init, param_init).
Use 0 to not use initialization""")
# Pretrained word vectors
parser.add_argument('-pre_word_vecs_enc',
help="""If a valid path is specified, then this will load
pretrained word embeddings on the encoder side.
See README for specific formatting instructions.""")
parser.add_argument('-pre_word_vecs_dec',
help="""If a valid path is specified, then this will load
pretrained word embeddings on the decoder side.
See README for specific formatting instructions.""")
# Fixed word vectors
parser.add_argument('-fix_word_vecs_enc',
action='store_true',
help="Fix word embeddings on the encoder side.")
parser.add_argument('-fix_word_vecs_dec',
action='store_true',
help="Fix word embeddings on the encoder side.")
# Optimization options
parser.add_argument('-batch_size', type=int, default=64,
help='Maximum batch size')
parser.add_argument('-batch_workers', type=int, default=4,
help='Number of workers for generating batches')
parser.add_argument('-optim', default='adam',
choices=['sgd', 'adagrad', 'adadelta', 'adam'],
help="""Optimization method.""")
parser.add_argument('-max_grad_norm', type=float, default=1,
help="""If the norm of the gradient vector exceeds this,
renormalize it to have the norm equal to
max_grad_norm""")
parser.add_argument('-truncated_decoder', type=int, default=0,
help="""Truncated bptt.""")
parser.add_argument('-loss_normalization', default="tokens", choices=['tokens', 'batches'],
help="Normalize the cross-entropy loss by the number of tokens or batch size")
# Learning options
parser.add_argument('-train_ml', action="store_true", default=False,
help='Train with Maximum Likelihood or not')
parser.add_argument('-train_rl', action="store_true", default=False,
help='Train with Reinforcement Learning or not')
# Reinforcement Learning options
#parser.add_argument('-rl_method', default=0, type=int,
# help="""0: ori, 1: running average as baseline""")
parser.add_argument('-max_sample_length', default=6, type=int,
help="The max length of sequence that can be sampled by the model")
parser.add_argument('-max_length', type=int, default=6,
help='Maximum prediction length.')
parser.add_argument('-topk', type=str, default='M',
help='The only pick the top k predictions in reward.')
parser.add_argument('-reward_type', default='0', type=int,
# choices=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
help="""Type of reward. 0: f1, 1: recall, 2: ndcg, 3: accuracy, 4: alpha-ndcg, 5: alpha-dcg, 6: AP, 7: F1 penalize duplicate
9: phrase reward edit distance, 10: phrase reward token f1, 11: phrase reward token f1 + edit distance""")
parser.add_argument('-match_type', default='exact',
choices=['exact', 'sub'],
help="""Either exact matching or substring matching.""")
parser.add_argument('-pretrained_model', default="",
help="The path of pretrained model. Only effective in RL")
parser.add_argument('-reward_shaping', action="store_true", default=False,
help="Use reward shaping in RL training")
parser.add_argument('-baseline', default="self", choices=["none", "self"],
help="The baseline in RL training. none: no baseline; self: use greedy decoding as baseline")
parser.add_argument('-mc_rollouts', action="store_true", default=False,
help="Use Monte Carlo rollouts to estimate q value. Not support yet.")
parser.add_argument('-num_rollouts', type=int, default=3,
help="The number of Monte Carlo rollouts. Only effective when mc_rollouts is True. Not supported yet")
# One2many options
parser.add_argument('-delimiter_type', type=int, default=0, choices=[0, 1],
help='If type is 0, use <sep> to separate keyphrases. If type is 1, use <eos> to separate keyphrases')
parser.add_argument('-one2many', action="store_true", default=False,
help='If true, it will not split a sample into multiple src-keyphrase pairs')
parser.add_argument('-one2many_mode', type=int, default=0, choices=[1, 2, 3],
help='Only effective when one2many=True. 1: concatenated the keyphrases by <sep>; 2: reset the inital state and input after each keyphrase; 3: reset the input after each keyphrase')
parser.add_argument('-num_predictions', type=int, default=1,
help='Control the number of predictions when one2many_mode=2. If you set the one2many_mode to 1, the number of predictions should also be 1.')
#parser.add_argument('-loss_scale', type=float, default=0.5,
# help='A scaling factor to merge the loss of ML and RL parts: L_mixed = γ * L_rl + (1 − γ) * L_ml'
# 'The γ used by Metamind is 0.9984 in "A DEEP REINFORCED MODEL FOR ABSTRACTIVE SUMMARIZATION"'
# 'The α used by Google is 0.017 in "Google Translation": O_Mixed(θ) = α ∗ O_ML(θ) + O_RL(θ)'
# )
#parser.add_argument('-rl_start_epoch', default=2, type=int,
# help="""from which epoch rl training starts""")
parser.add_argument('-init_perturb_std', type=float, default=0,
help="Init std of gaussian perturbation vector to the hidden state of the GRU after generated each a keyphrase")
parser.add_argument('-final_perturb_std', type=float, default=0,
help="Final std of gaussian perturbation vector to the hidden state of the GRU after generated each a keyphrase. Only effective when perturb_decay=1")
parser.add_argument('-perturb_decay_mode', type=int, default=1, choices=[0, 1, 2],
help='Specify how the std of perturbation vector decay. 0: no decay, 1: exponential decay, 2: iteration-wise decay')
parser.add_argument('-perturb_decay_factor', type=float, default=0.0001,
help="Specify the decay factor, only effective when perturb_decay=1 or 2")
parser.add_argument('-perturb_baseline', action="store_true", default=False,
help="Whether to perturb the baseline or not")
#parser.add_argument('-perturb_decay_along_phrases', action="store_true", default=False,
# help="Decay the perturbations along the predicted keyphrases, std=std/num_of_preds")
parser.add_argument('-regularization_type', type=int, default=0, choices=[0, 1, 2],
help='0: no regularization, 1: percentage of unique keyphrases, 2: entropy')
parser.add_argument('-regularization_factor', type=float, default=0.0,
help="Factor of regularization")
parser.add_argument('-replace_unk', action="store_true",
help='Replace the unk token with the token of highest attention score.')
parser.add_argument('-remove_src_eos', action="store_true",
help='Remove the eos token at the end of src text')
# GPU
# Teacher Forcing and Scheduled Sampling
parser.add_argument('-must_teacher_forcing', action="store_true",
help="Apply must_teacher_forcing or not")
parser.add_argument('-teacher_forcing_ratio', type=float, default=0,
help="The ratio to apply teaching forcing ratio (default 0)")
parser.add_argument('-scheduled_sampling', action="store_true",
help="Apply scheduled sampling or not")
parser.add_argument('-scheduled_sampling_batches', type=int, default=10000,
help="The maximum number of batches to apply scheduled sampling")
# learning rate
parser.add_argument('-learning_rate', type=float, default=0.001,
help="""Starting learning rate.
Recommended settings: sgd = 1, adagrad = 0.1,
adadelta = 1, adam = 0.001""")
parser.add_argument('-learning_rate_rl', type=float, default=0.00005,
help="""Starting learning rate for Reinforcement Learning.
Recommended settings: sgd = 1, adagrad = 0.1,
adadelta = 1, adam = 0.001""")
parser.add_argument('-learning_rate_decay_rl', action="store_true", default=False,
help="""A flag to use learning rate decay in rl training""")
parser.add_argument('-learning_rate_decay', type=float, default=0.5,
help="""If update_learning_rate, decay learning rate by
this much if (i) perplexity does not decrease on the
validation set or (ii) epoch has gone past
start_decay_at""")
parser.add_argument('-start_decay_at', type=int, default=8,
help="""Start decaying every epoch after and including this
epoch""")
parser.add_argument('-start_checkpoint_at', type=int, default=2,
help="""Start checkpointing every epoch after and including
this epoch""")
parser.add_argument('-decay_method', type=str, default="",
choices=['noam'], help="Use a custom decay rate.")
parser.add_argument('-warmup_steps', type=int, default=4000,
help="""Number of warmup steps for custom decay.""")
parser.add_argument('-checkpoint_interval', type=int, default=4000,
help='Run validation and save model parameters at this interval.')
#parser.add_argument('-run_valid_every', type=int, default=4000,
# help="Run validation test at this interval (every run_valid_every batches)")
parser.add_argument('-disable_early_stop_rl', action="store_true", default=False,
help="A flag to disable early stopping in rl training.")
parser.add_argument('-early_stop_tolerance', type=int, default=4,
help="Stop training if it doesn't improve any more for several rounds of validation")
timemark = time.strftime('%Y%m%d-%H%M%S', time.localtime(time.time()))
parser.add_argument('-timemark', type=str, default=timemark,
help="The current time stamp.")
#parser.add_argument('-save_model_every', type=int, default=2000,
# help="Save checkpoint at this interval.")
parser.add_argument('-report_every', type=int, default=10,
help="Print stats at this interval.")
parser.add_argument('-exp', type=str, default="kp20k",
help="Name of the experiment for logging.")
parser.add_argument('-exp_path', type=str, default="exp/%s.%s",
help="Path of experiment log/plot.")
parser.add_argument('-model_path', type=str, default="model/%s.%s",
help="Path of checkpoints.")
# beam search setting
'''
parser.add_argument('-beam_search_batch_example', type=int, default=8,
help='Maximum of examples for one batch, should be disabled for training')
parser.add_argument('-beam_search_batch_size', type=int, default=8,
help='Maximum batch size')
parser.add_argument('-beam_search_batch_workers', type=int, default=4,
help='Number of workers for generating batches')
parser.add_argument('-beam_size', type=int, default=150,
help='Beam size')
parser.add_argument('-max_sent_length', type=int, default=6,
help='Maximum sentence length.')
'''
def predict_opts(parser):
parser.add_argument('-model', required=True,
help='Path to model .pt file')
parser.add_argument('-verbose', action="store_true", help="Whether to log the results of every individual samples")
parser.add_argument('-attn_debug', action="store_true", help="Whether to print attn for each word")
#parser.add_argument('-present_kp_only', action="store_true", help="Only consider the keyphrases that present in the source text")
parser.add_argument('-data', required=True,
help="""Path prefix to the "test.one2many.pt" file path from preprocess.py""")
parser.add_argument('-vocab', required=True,
help="""Path prefix to the "vocab.pt"
file path from preprocess.py""")
parser.add_argument('-custom_data_filename_suffix', action="store_true",
help='')
parser.add_argument('-custom_vocab_filename_suffix', action="store_true",
help='')
parser.add_argument('-vocab_filename_suffix', default='',
help='')
parser.add_argument('-data_filename_suffix', default='',
help='')
parser.add_argument('-beam_size', type=int, default=50,
help='Beam size')
parser.add_argument('-n_best', type=int, default=-1,
help='Pick the top n_best sequences from beam_search, if n_best < 0, then n_best=beam_size')
parser.add_argument('-max_length', type=int, default=6,
help='Maximum prediction length.')
parser.add_argument('-length_penalty_factor', type=float, default=0.,
help="""Google NMT length penalty parameter
(higher = longer generation)""")
parser.add_argument('-coverage_penalty_factor', type=float, default=-0.,
help="""Coverage penalty parameter""")
parser.add_argument('-length_penalty', default='none', choices=['none', 'wu', 'avg'],
help="""Length Penalty to use.""")
parser.add_argument('-coverage_penalty', default='none', choices=['none', 'wu', 'summary'],
help="""Coverage Penalty to use.""")
parser.add_argument('-gpuid', default=0, type=int,
help="Use CUDA on the selected device.")
# parser.add_argument('-gpuid', default=[0], nargs='+', type=int,
# help="Use CUDA on the listed devices.")
parser.add_argument('-seed', type=int, default=9527,
help="""Random seed used for the experiments
reproducibility.""")
parser.add_argument('-batch_size', type=int, default=8,
help='Maximum batch size')
parser.add_argument('-batch_workers', type=int, default=4,
help='Number of workers for generating batches')
timemark = time.strftime('%Y%m%d-%H%M%S', time.localtime(time.time()))
parser.add_argument('-timemark', type=str, default=timemark,
help="The current time stamp.")
parser.add_argument('-include_attn_dist', action="store_true",
help="Whether to return the attention distribution, for the visualization of the attention weights, haven't implemented")
parser.add_argument('-pred_file_prefix', type=str, default="",
help="Prefix of prediction file.")
parser.add_argument('-pred_path', type=str, default="pred/%s.%s",
help="Path of outputs of predictions.")
parser.add_argument('-exp', type=str, default="kp20k",
help="Name of the experiment for logging.")
parser.add_argument('-exp_path', type=str, default="exp/%s.%s",
help="Path of experiment log/plot.")
parser.add_argument('-one2many', action="store_true", default=False,
help='If true, it will not split a sample into multiple src-keyphrase pairs')
#parser.add_argument('-greedy', action="store_true", default=False,
# help='Use greedy decoding instead of sampling in one2many mode')
parser.add_argument('-one2many_mode', type=int, choices=[0, 1, 2, 3], default=0,
help='Only effective when one2many=True. 0 is a dummy option which takes no effect. 1: concatenated the keyphrases by <sep>; 2: reset the inital state and input after each keyphrase; 3: reset the input after each keyphrase')
parser.add_argument('-delimiter_type', type=int, default=0, choices=[0, 1],
help='If type is 0, use <sep> to separate keyphrases. If type is 1, use <eos> to separate keyphrases')
#parser.add_argument('-num_predictions', type=int, default=1,
# help='Control the number of predictions when one2many_mode=2.')
parser.add_argument('-max_eos_per_output_seq', type=int, default=1, # max_eos_per_seq
help='Specify the max number of eos in one output sequences to control the number of keyphrases in one output sequence. Only effective when one2many_mode=3 or one2many_mode=2.')
parser.add_argument('-sampling', action="store_true",
help='Use sampling instead of beam search to generate the predictions.')
parser.add_argument('-replace_unk', action="store_true",
help='Replace the unk token with the token of highest attention score.')
parser.add_argument('-remove_src_eos', action="store_true",
help='Remove the eos token at the end of src text')
parser.add_argument('-block_ngram_repeat', type=int, default=0,
help='Block repeat of n-gram')
parser.add_argument('-ignore_when_blocking', nargs='+', type=str,
default=['<sep>'],
help="""Ignore these strings when blocking repeats.
You want to block sentence delimiters.""")
def post_predict_opts(parser):
parser.add_argument('-pred_file_path', type=str, required=True,
help="Path of the prediction file.")
parser.add_argument('-src_file_path', type=str, required=True,
help="Path of the source text file.")
parser.add_argument('-trg_file_path', type=str,
help="Path of the target text file.")
parser.add_argument('-export_filtered_pred', action="store_true",
help="Export the filtered predictions to a file or not")
parser.add_argument('-filtered_pred_path', type=str, default="",
help="Path of the folder for storing the filtered prediction")
parser.add_argument('-exp', type=str, default="kp20k",
help="Name of the experiment for logging.")
parser.add_argument('-exp_path', type=str, default="",
help="Path of experiment log/plot.")
parser.add_argument('-disable_extra_one_word_filter', action="store_true",
help="If False, it will only keep the first one-word prediction")
parser.add_argument('-disable_valid_filter', action="store_true",
help="If False, it will remove all the invalid predictions")
parser.add_argument('-num_preds', type=int, default=200,
help='It will only consider the first num_preds keyphrases in each line of the prediction file')
parser.add_argument('-debug', action="store_true", default=False,
help='Print out the metric at each step or not')
parser.add_argument('-match_by_str', action="store_true", default=False,
help='If false, match the words at word level when checking present keyphrase. Else, match the words at string level.')
parser.add_argument('-invalidate_unk', action="store_true", default=False,
help='Treat unk as invalid output')
parser.add_argument('-target_separated', action="store_true", default=False,
help='The targets has already been separated into present keyphrases and absent keyphrases')
parser.add_argument('-prediction_separated', action="store_true", default=False,
help='The predictions has already been separated into present keyphrases and absent keyphrases')
parser.add_argument('-reverse_sorting', action="store_true", default=False,
help='Only effective in target separated.')
parser.add_argument('-tune_f1_v', action="store_true", default=False,
help='For tuning the F1@V score.')
parser.add_argument('-all_ks', nargs='+', default=['5', '10', 'M'], type=str,
help='only allow integer or M')
parser.add_argument('-present_ks', nargs='+', default=['5', '10', 'M'], type=str,
help='')
parser.add_argument('-absent_ks', nargs='+', default=['5', '10', '50', 'M'], type=str,
help='')
parser.add_argument('-target_already_stemmed', action="store_true", default=False,
help='If it is true, it will not stem the target keyphrases.')
parser.add_argument('-meng_rui_precision', action="store_true", default=False,
help='If it is true, when computing precision, it will divided by the number pf predictions, instead of divided by k.')
parser.add_argument('-use_name_variations', action="store_true", default=False,
help='Match the ground-truth with name variations.')
def interactive_predict_opts(parser):
parser.add_argument('-model', required=True,
help='Path to model .pt file')
parser.add_argument('-attn_debug', action="store_true", help="Whether to print attn for each word")
parser.add_argument('-src_file', required=True,
help="""Path to source file""")
#parser.add_argument('-trg_file', required=True,
# help="""Path to target file""")
parser.add_argument('-vocab', required=True,
help="""Path prefix to the "vocab.pt"
file path from preprocess.py""")
parser.add_argument('-custom_vocab_filename_suffix', action="store_true",
help='')
parser.add_argument('-vocab_filename_suffix', default='',
help='')
parser.add_argument('-beam_size', type=int, default=50,
help='Beam size')
parser.add_argument('-n_best', type=int, default=1,
help='Pick the top n_best sequences from beam_search, if n_best < 0, then n_best=beam_size')
parser.add_argument('-max_length', type=int, default=60,
help='Maximum prediction length.')
parser.add_argument('-length_penalty_factor', type=float, default=0.,
help="""Google NMT length penalty parameter
(higher = longer generation)""")
parser.add_argument('-coverage_penalty_factor', type=float, default=-0.,
help="""Coverage penalty parameter""")
parser.add_argument('-length_penalty', default='none', choices=['none', 'wu', 'avg'],
help="""Length Penalty to use.""")
parser.add_argument('-coverage_penalty', default='none', choices=['none', 'wu', 'summary'],
help="""Coverage Penalty to use.""")
parser.add_argument('-gpuid', default=0, type=int,
help="Use CUDA on the selected device.")
parser.add_argument('-seed', type=int, default=9527,
help="""Random seed used for the experiments
reproducibility.""")
parser.add_argument('-batch_size', type=int, default=8,
help='Maximum batch size')
parser.add_argument('-batch_workers', type=int, default=1,
help='Number of workers for generating batches')
timemark = time.strftime('%Y%m%d-%H%M%S', time.localtime(time.time()))
parser.add_argument('-timemark', type=str, default=timemark,
help="The current time stamp.")
parser.add_argument('-include_attn_dist', action="store_true",
help="Whether to return the attention distribution, for the visualization of the attention weights, haven't implemented")
parser.add_argument('-pred_path', type=str, required=True,
help="Path of outputs of predictions.")
parser.add_argument('-pred_file_prefix', type=str, default="",
help="Prefix of prediction file.")
parser.add_argument('-exp', type=str, default="kp20k",
help="Name of the experiment for logging.")
#parser.add_argument('-exp_path', type=str, default="exp/%s.%s",
# help="Path of experiment log/plot.")
parser.add_argument('-one2many', action="store_true", default=False,
help='If true, it will not split a sample into multiple src-keyphrase pairs')
#parser.add_argument('-greedy', action="store_true", default=False,
# help='Use greedy decoding instead of sampling in one2many mode')
parser.add_argument('-one2many_mode', type=int, choices=[0, 1, 2, 3], default=0,
help='Only effective when one2many=True. 0 is a dummy option which takes no effect. 1: concatenated the keyphrases by <sep>; 2: reset the inital state and input after each keyphrase; 3: reset the input after each keyphrase')
parser.add_argument('-delimiter_type', type=int, default=0, choices=[0, 1],
help='If type is 0, use <sep> to separate keyphrases. If type is 1, use <eos> to separate keyphrases')
parser.add_argument('-max_eos_per_output_seq', type=int, default=1, # max_eos_per_seq
help='Specify the max number of eos in one output sequences to control the number of keyphrases in one output sequence. Only effective when one2many_mode=3 or one2many_mode=2.')
parser.add_argument('-sampling', action="store_true",
help='Use sampling instead of beam search to generate the predictions.')
parser.add_argument('-replace_unk', action="store_true",
help='Replace the unk token with the token of highest attention score.')
parser.add_argument('-remove_src_eos', action="store_true",
help='Remove the eos token at the end of src text')
parser.add_argument('-remove_title_eos', action="store_true", default=False,
help='Remove the eos token at the end of title')
parser.add_argument('-block_ngram_repeat', type=int, default=0,
help='Block repeat of n-gram')
parser.add_argument('-ignore_when_blocking', nargs='+', type=str,
default=['<sep>'],
help="""Ignore these strings when blocking repeats.
You want to block sentence delimiters.""")