-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
334 lines (286 loc) · 15.1 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import argparse
from collections import Counter
import torch
import pickle
import pykp.io
import config
def read_tokenized_src_file(path, remove_eos=True):
"""
read tokenized source text file and convert them to list of list of words
:param path:
:param remove_eos: concatenate the words in title and content
:return: data, a 2d list, each item in the list is a list of words of a src text, len(data) = num_lines
"""
data = []
with open(path) as f:
for line in f:
if remove_eos:
title_and_context = line.strip().split('<eos>')
if len(title_and_context) == 1: # it only has context without title
[context] = title_and_context
word_list = context.strip().split(' ')
elif len(title_and_context) == 2:
[title, context] = title_and_context
word_list = title.strip().split(' ') + context.strip().split(' ')
else:
raise ValueError("The source text contains more than one title")
else:
word_list = line.strip().split(' ')
data.append(word_list)
return data
def read_tokenized_src_file(path, remove_eos=True, title_guided=False):
"""
read tokenized source text file and convert them to list of list of words
:param path:
:param remove_eos: concatenate the words in title and content
:return: data, a 2d list, each item in the list is a list of words of a src text, len(data) = num_lines
"""
tokenized_train_src = []
if title_guided:
tokenized_train_title = []
filtered_cnt = 0
for line_idx, src_line in enumerate(open(path, 'r')):
# process source line
title_and_context = src_line.strip().split('<eos>')
if len(title_and_context) == 1: # it only has context without title
[context] = title_and_context
src_word_list = context.strip().split(' ')
if title_guided:
raise ValueError("The source text does not contains any title, so you cannot return title.")
elif len(title_and_context) == 2:
[title, context] = title_and_context
title_word_list = title.strip().split(' ')
context_word_list = context.strip().split(' ')
if remove_eos:
src_word_list = title_word_list + context_word_list
else:
src_word_list = title_word_list + ['<eos>'] + context_word_list
else:
raise ValueError("The source text contains more than one title")
# Append the lines to the data
tokenized_train_src.append(src_word_list)
if title_guided:
tokenized_train_title.append(title_word_list)
if title_guided:
return tokenized_train_src, tokenized_train_title
else:
return tokenized_train_src
def read_tokenized_trg_file(path):
"""
read tokenized target text file and convert them to list of list of words
:param path:
:return: data, a 3d list, each item in the list is a list of target, each target is a list of words.
"""
data = []
with open(path) as f:
for line in f:
trg_list = line.strip().split(';') # a list of target sequences
trg_word_list = [trg.split(' ') for trg in trg_list]
data.append(trg_word_list)
return data
def read_src_and_trg_files(src_file, trg_file, is_train, remove_eos=True, title_guided=False):
tokenized_train_src = []
tokenized_train_trg = []
if title_guided:
tokenized_train_title = []
filtered_cnt = 0
for line_idx, (src_line, trg_line) in enumerate(zip(open(src_file, 'r'), open(trg_file, 'r'))):
# process source line
if (len(src_line.strip()) == 0) and is_train:
continue
title_and_context = src_line.strip().split('<eos>')
if len(title_and_context) == 1: # it only has context without title
[context] = title_and_context
src_word_list = context.strip().split(' ')
if title_guided:
raise ValueError("The source text does not contains any title, so you cannot return title.")
elif len(title_and_context) == 2:
[title, context] = title_and_context
title_word_list = title.strip().split(' ')
context_word_list = context.strip().split(' ')
if remove_eos:
src_word_list = title_word_list + context_word_list
else:
src_word_list = title_word_list + ['<eos>'] + context_word_list
else:
raise ValueError("The source text contains more than one title")
# process target line
trg_list = trg_line.strip().split(';') # a list of target sequences
trg_word_list = [trg.split(' ') for trg in trg_list]
# If it is training data, ignore the line with source length > 400 or target length > 60
if is_train:
if len(src_word_list) > 400 or len(trg_word_list) > 14:
filtered_cnt += 1
continue
# Append the lines to the data
tokenized_train_src.append(src_word_list)
tokenized_train_trg.append(trg_word_list)
if title_guided:
tokenized_train_title.append(title_word_list)
assert len(tokenized_train_src) == len(
tokenized_train_trg), 'the number of records in source and target are not the same'
print("%d rows filtered" % filtered_cnt)
tokenized_train_pairs = list(zip(tokenized_train_src, tokenized_train_trg))
if title_guided:
return tokenized_train_pairs, tokenized_train_title
else:
return tokenized_train_pairs
def build_vocab(tokenized_src_trg_pairs, include_peos):
token_freq_counter = Counter()
for src_word_list, trg_word_lists in tokenized_src_trg_pairs:
token_freq_counter.update(src_word_list)
for word_list in trg_word_lists:
token_freq_counter.update(word_list)
# Discard special tokens if already present
special_tokens = ['<pad>', '<bos>', '<eos>', '<unk>', '<sep>']
if include_peos:
special_tokens.append('<peos>')
num_special_tokens = len(special_tokens)
for s_t in special_tokens:
if s_t in token_freq_counter:
del token_freq_counter[s_t]
word2idx = dict()
idx2word = dict()
for idx, word in enumerate(special_tokens):
# '<pad>': 0, '<bos>': 1, '<eos>': 2, '<unk>': 3
word2idx[word] = idx
idx2word[idx] = word
sorted_word2idx = sorted(token_freq_counter.items(), key=lambda x: x[1], reverse=True)
sorted_words = [x[0] for x in sorted_word2idx]
for idx, word in enumerate(sorted_words):
word2idx[word] = idx + num_special_tokens
for idx, word in enumerate(sorted_words):
idx2word[idx + num_special_tokens] = word
return word2idx, idx2word, token_freq_counter
def main(opt):
# Preprocess training data
"""
# Tokenize train_src and train_trg
tokenized_train_src = read_tokenized_src_file(opt.train_src, remove_eos=opt.remove_eos)
tokenized_train_trg = read_tokenized_trg_file(opt.train_trg)
assert len(tokenized_train_src) == len(tokenized_train_trg), 'the number of records in source and target are not the same'
tokenized_train_pairs = list(zip(tokenized_train_src, tokenized_train_trg))
# a list of tuple, (src_word_list, [trg_1_word_list, trg_2_word_list, ...])
del tokenized_train_src
del tokenized_train_trg
"""
title_guided = opt.title_guided
# Tokenize train_src and train_trg, return a list of tuple, (src_word_list, [trg_1_word_list, trg_2_word_list, ...])
if title_guided:
tokenized_train_pairs, tokenized_train_title = read_src_and_trg_files(opt.train_src, opt.train_trg, is_train=True, remove_eos=opt.remove_eos, title_guided=True)
else:
tokenized_train_pairs = read_src_and_trg_files(opt.train_src, opt.train_trg, is_train=True, remove_eos=opt.remove_eos, title_guided=False)
tokenized_train_title = None
# build vocab from training src
# build word2id, id2word, and vocab, where vocab is a counter
# with special tokens, '<pad>': 0, '<bos>': 1, '<eos>': 2, '<unk>': 3
# word2id, id2word are ordered by frequencies, includes all the tokens in the data
# simply concatenate src and target when building vocab
word2idx, idx2word, token_freq_counter = build_vocab(tokenized_train_pairs, opt.include_peos)
# building preprocessed training set for one2one training mode
train_one2one = pykp.io.build_dataset(tokenized_train_pairs, word2idx, idx2word, opt, mode='one2one', include_original=True, title_list=tokenized_train_title)
# a list of dict, with fields src, trg, src_oov, oov_dict, oov_list, etc.
print("Dumping train one2one to disk: %s" % (opt.data_dir + '/train.one2one.pt'))
torch.save(train_one2one, open(opt.data_dir + '/train.one2one.pt', 'wb'))
len_train_one2one = len(train_one2one)
del train_one2one
# building preprocessed training set for one2many training mode
train_one2many = pykp.io.build_dataset(tokenized_train_pairs, word2idx, idx2word, opt, mode='one2many', include_original=True, title_list=tokenized_train_title)
print("Dumping train one2many to disk: %s" % (opt.data_dir + '/train.one2many.pt'))
torch.save(train_one2many, open(opt.data_dir + '/train.one2many.pt', 'wb'))
len_train_one2many = len(train_one2many)
del train_one2many
# Preprocess validation data
"""
# Tokenize
tokenized_valid_src = read_tokenized_src_file(opt.valid_src, remove_eos=opt.remove_eos)
tokenized_valid_trg = read_tokenized_trg_file(opt.valid_trg)
assert len(tokenized_valid_src) == len(
tokenized_valid_trg), 'the number of records in source and target are not the same'
tokenized_valid_pairs = list(zip(tokenized_valid_src, tokenized_valid_trg))
del tokenized_valid_src
del tokenized_valid_trg
"""
# Tokenize valid_src and valid_trg, return a list of tuple, (src_word_list, [trg_1_word_list, trg_2_word_list, ...])
if title_guided:
tokenized_valid_pairs, tokenized_valid_title = read_src_and_trg_files(opt.valid_src, opt.valid_trg, is_train=False, remove_eos=opt.remove_eos, title_guided=True)
else:
tokenized_valid_pairs = read_src_and_trg_files(opt.valid_src, opt.valid_trg, is_train=False, remove_eos=opt.remove_eos, title_guided=False)
tokenized_valid_title = None
# building preprocessed validation set for one2one and one2many training mode
valid_one2one = pykp.io.build_dataset(
tokenized_valid_pairs, word2idx, idx2word, opt, mode='one2one', include_original=True, title_list=tokenized_valid_title)
valid_one2many = pykp.io.build_dataset(
tokenized_valid_pairs, word2idx, idx2word, opt, mode='one2many', include_original=True, title_list=tokenized_valid_title)
print("Dumping valid to disk: %s" % (opt.data_dir + '/valid.pt'))
torch.save(valid_one2one, open(opt.data_dir+ '/valid.one2one.pt', 'wb'))
torch.save(valid_one2many, open(opt.data_dir + '/valid.one2many.pt', 'wb'))
# Preprocess test data
"""
tokenized_test_src = read_tokenized_src_file(opt.test_src, remove_eos=opt.remove_eos)
tokenized_test_trg = read_tokenized_trg_file(opt.test_trg)
assert len(tokenized_test_src) == len(
tokenized_test_trg), 'the number of records in source and target are not the same'
tokenized_test_pairs = list(zip(tokenized_test_src, tokenized_test_trg))
del tokenized_test_src
del tokenized_test_trg
"""
# Tokenize train_src and train_trg, return a list of tuple, (src_word_list, [trg_1_word_list, trg_2_word_list, ...])
if title_guided:
tokenized_test_pairs, tokenized_test_title = read_src_and_trg_files(opt.test_src, opt.test_trg, is_train=False, remove_eos=opt.remove_eos, title_guided=True)
else:
tokenized_test_pairs = read_src_and_trg_files(opt.test_src, opt.test_trg, is_train=False,
remove_eos=opt.remove_eos, title_guided=False)
tokenized_test_title = None
# building preprocessed test set for one2one and one2many training mode
test_one2one = pykp.io.build_dataset(
tokenized_test_pairs, word2idx, idx2word, opt, mode='one2one', include_original=True, title_list=tokenized_test_title)
test_one2many = pykp.io.build_dataset(
tokenized_test_pairs, word2idx, idx2word, opt, mode='one2many', include_original=True, title_list=tokenized_test_title)
print("Dumping test to disk: %s" % (opt.data_dir + '/valid.pt'))
torch.save(test_one2one, open(opt.data_dir + '/test.one2one.pt', 'wb'))
torch.save(test_one2many, open(opt.data_dir + '/test.one2many.pt', 'wb'))
print("Dumping dict to disk: %s" % opt.data_dir + '/vocab.pt')
torch.save([word2idx, idx2word, token_freq_counter],
open(opt.data_dir + '/vocab.pt', 'wb'))
print('#pairs of train_one2one = %d' % len_train_one2one)
print('#pairs of train_one2many = %d' % len_train_one2many)
print('#pairs of valid_one2one = %d' % len(valid_one2one))
print('#pairs of valid_one2many = %d' % len(valid_one2many))
print('#pairs of test_one2one = %d' % len(test_one2one))
print('#pairs of test_one2many = %d' % len(test_one2many))
print('Done!')
'''
special_tokens = ['<pad>']
vocab = []
vocab += special_tokens
vocab += [w for w, n in token_freq_counter.items() if n > opt['word_count_threshold']]
total_tokens = len(token_freq_counter)
vocab_size = len(vocab) - len(special_tokens)
OOV_words = total_tokens - vocab_size
print('Vocab size: %d' % vocab_size)
print('Number of OOV words: %d' % OOV_words)
print('OOV percentage: %.2f' % OOV_words/total_tokens * 100 )
'''
return
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='preprocess.py', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# The source files are tokenized and the tokens are separated by a space character.
# The target sequences in the target files are separated by ';' character
# data_dir should contains six files, train_src.txt, train_trg.txt, valid_src.txt, valid_trg.txt, test_src.txt, test_trg.txt
parser.add_argument('-data_dir', required=True, help='The source file of the data')
parser.add_argument('-remove_eos', action="store_true", help='Remove the eos after the title')
parser.add_argument('-include_peos', action="store_true", help='Include <peos> as a special token')
parser.add_argument('-title_guided', action="store_true", help='Allow easy access to the title of the source text.')
config.vocab_opts(parser)
#parser.add_argument('-vocab_size', default=50000, type=int, help='Max. number of words in vocab')
#parser.add_argument('-max_unk_words', default=1000, type=int, help='Max. number of words in OOV vocab')
opt = parser.parse_args()
#opt = vars(args) # convert to dict
opt.train_src = opt.data_dir + '/train_src.txt'
opt.train_trg = opt.data_dir + '/train_trg.txt'
opt.valid_src = opt.data_dir + '/valid_src.txt'
opt.valid_trg = opt.data_dir + '/valid_trg.txt'
opt.test_src = opt.data_dir + '/test_src.txt'
opt.test_trg = opt.data_dir + '/test_trg.txt'
main(opt)