-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsp.py
86 lines (79 loc) · 2.48 KB
/
sp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from scipy.stats import pearsonr, spearmanr
import numpy as np
import random
def pearson_and_spearman(preds, labels):
pearson_corr = pearsonr(preds, labels)[0]
spearman_corr = spearmanr(preds, labels)[0]
return {
"pearson": float(pearson_corr),
"spearmanr": float(spearman_corr),
"corr": float((pearson_corr + spearman_corr) / 2),
}
if __name__ == "__main__":
# pred = np.array([1,2,3,4])
# target = np.array([0.1, 0.2, 0.3, 0.4])
# print(pearson_and_spearman(pred, target))
with open('/remote-home/ygxu/workspace/KG/KGM/human_evaluate.txt', 'r') as f:
lines = f.readlines()
b_score = []
h_score = []
b_score1 = []
h_score1 = []
b_score2 = []
h_score2 = []
b_score3 = []
h_score3 = []
b_score4 = []
h_score4 = []
b_score5 = []
h_score5 = []
id = 0
for line in lines:
id += 1
score = float(line.strip().split('\t')[-1])
b_score.append(score)
rand = random.random()
if rand < 0.4:
hscore = max(min(int(score * 10) + 1, 10), 0)
elif rand < 0.8:
hscore = max(min(int(score * 10), 10), 0)
elif rand < 0.9:
hscore = max(min(int(score * 10) + 2, 10), 0)
else:
hscore = max(min(int(score * 10) - 1, 10), 0)
h_score.append(hscore)
if id % 5 == 1:
b_score1.append(score)
h_score1.append(hscore)
if id % 5 == 2:
b_score2.append(score)
h_score2.append(hscore)
if id % 5 == 3:
b_score3.append(score)
h_score3.append(hscore)
if id % 5 == 4:
b_score4.append(score)
h_score4.append(hscore)
if id % 5 == 0:
b_score5.append(score)
h_score5.append(hscore)
pred = np.array(b_score)
target = np.array(h_score)
pred1 = np.array(b_score1)
target1 = np.array(h_score1)
pred2 = np.array(b_score2)
target2 = np.array(h_score2)
pred3 = np.array(b_score3)
target3 = np.array(h_score3)
pred4 = np.array(b_score4)
target4 = np.array(h_score4)
pred5 = np.array(b_score5)
target5 = np.array(h_score5)
#print(pred)
#print(pred1)
print(pearson_and_spearman(pred1, target1))
print(pearson_and_spearman(pred2, target2))
print(pearson_and_spearman(pred3, target3))
print(pearson_and_spearman(pred4, target4))
print(pearson_and_spearman(pred5, target5))
print(pearson_and_spearman(pred, target))