-
Notifications
You must be signed in to change notification settings - Fork 0
/
util.py
435 lines (378 loc) · 18 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
CS224N 2016-17: Homework 3
util.py: General utility routines
Arun Chaganty <[email protected]>
"""
from __future__ import division
import sys
import time
import logging
import StringIO
from collections import defaultdict, Counter, OrderedDict
import numpy as np
from numpy import array, zeros, allclose
logger = logging.getLogger("hw3")
logger.setLevel(logging.DEBUG)
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)
def read_conll(fstream):
"""
Reads a input stream @fstream (e.g. output of `open(fname, 'r')`) in CoNLL file format.
@returns a list of examples [(tokens), (labels)]. @tokens and @labels are lists of string.
"""
ret = []
current_toks, current_lbls = [], []
for line in fstream:
line = line.strip()
if len(line) == 0 or line.startswith("-DOCSTART-"):
if len(current_toks) > 0:
assert len(current_toks) == len(current_lbls)
ret.append((current_toks, current_lbls))
current_toks, current_lbls = [], []
else:
assert "\t" in line, r"Invalid CONLL format; expected a '\t' in {}".format(line)
tok, lbl = line.split("\t")
current_toks.append(tok)
current_lbls.append(lbl)
if len(current_toks) > 0:
assert len(current_toks) == len(current_lbls)
ret.append((current_toks, current_lbls))
return ret
def test_read_conll():
input_ = [
"EU ORG",
"rejects O",
"German MISC",
"call O",
"to O",
"boycott O",
"British MISC",
"lamb O",
". O",
"",
"Peter PER",
"Blackburn PER",
"",
]
output = [
("EU rejects German call to boycott British lamb .".split(), "ORG O MISC O O O MISC O O".split()),
("Peter Blackburn".split(), "PER PER".split())
]
assert read_conll(input_) == output
def write_conll(fstream, data):
"""
Writes to an output stream @fstream (e.g. output of `open(fname, 'r')`) in CoNLL file format.
@data a list of examples [(tokens), (labels), (predictions)]. @tokens, @labels, @predictions are lists of string.
"""
for cols in data:
for row in zip(*cols):
fstream.write("\t".join(row))
fstream.write("\n")
fstream.write("\n")
def test_write_conll():
input = [
("EU rejects German call to boycott British lamb .".split(), "ORG O MISC O O O MISC O O".split()),
("Peter Blackburn".split(), "PER PER".split())
]
output = """EU ORG
rejects O
German MISC
call O
to O
boycott O
British MISC
lamb O
. O
Peter PER
Blackburn PER
"""
output_ = StringIO.StringIO()
write_conll(output_, input)
output_ = output_.getvalue()
assert output == output_
def load_word_vector_mapping(vocab_fstream, vector_fstream):
"""
Load word vector mapping using @vocab_fstream, @vector_fstream.
Assumes each line of the vocab file matches with those of the vector
file.
"""
ret = OrderedDict()
for vocab, vector in zip(vocab_fstream, vector_fstream):
vocab = vocab.strip()
vector = vector.strip()
ret[vocab] = array(list(map(float, vector.split())))
return ret
def test_load_word_vector_mapping():
vocab = """UUUNKKK
the
,
.
of
and
in""".split("\n")
vector = """0.172414 -0.091063 0.255125 -0.837163 0.434872 -0.499848 -0.042904 -0.059642 -0.635087 -0.458795 -0.105671 0.506513 -0.105105 -0.405678 0.493365 0.408807 0.401635 -0.817805 0.626340 0.580636 -0.246996 -0.008515 -0.671140 0.301865 -0.439651 0.247694 -0.291402 0.873009 0.216212 0.145576 -0.211101 -0.352360 0.227651 -0.118416 0.371816 0.261296 0.017548 0.596692 -0.485722 -0.369530 -0.048807 0.017960 -0.040483 0.111193 0.398039 0.162765 0.408946 0.005343 -0.107523 -0.079821
-0.454847 1.002773 -1.406829 -0.016482 0.459856 -0.224457 0.093396 -0.826833 -0.530674 1.211044 -0.165133 0.174454 -1.130952 -0.612020 -0.024578 -0.168508 0.320113 0.774229 -0.360418 1.483124 -0.230922 0.301055 -0.119924 0.601642 0.694616 -0.304431 -0.414284 0.667385 0.171208 -0.334842 -0.459286 -0.534202 0.533660 -0.379468 -0.378721 -0.240499 -0.446272 0.686113 0.662359 -0.865312 0.861331 -0.627698 -0.569544 -1.228366 -0.152052 1.589123 0.081337 0.182695 -0.593022 0.438300
-0.408797 -0.109333 -0.099279 -0.857098 -0.150319 -0.456398 -0.781524 -0.059621 0.302548 0.202162 -0.319892 -0.502241 -0.014925 0.020889 1.506245 0.247530 0.385598 -0.170776 0.325960 0.267304 0.157673 0.125540 -0.971452 -0.485595 0.487857 0.284369 -0.062811 -1.334082 0.744133 0.572701 1.009871 -0.457229 0.938059 0.654805 -0.430244 -0.697683 -0.220146 0.346002 -0.388637 -0.149513 0.011248 0.818728 0.042615 -0.594237 -0.646138 0.568898 0.700328 0.290316 0.293722 0.828779
-0.583585 0.413481 -0.708189 0.168942 0.238435 0.789011 -0.566401 0.177570 -0.244441 0.328214 -0.319583 -0.468558 0.520323 0.072727 1.792047 -0.781348 -0.636644 0.070102 -0.247090 0.110990 0.182112 1.609935 -1.081378 0.922773 -0.605783 0.793724 0.476911 -1.279422 0.904010 -0.519837 1.235220 -0.149456 0.138923 0.686835 -0.733707 -0.335434 -1.865440 -0.476014 -0.140478 -0.148011 0.555169 1.356662 0.850737 -0.484898 0.341224 -0.056477 0.024663 1.141509 0.742001 0.478773
-0.811262 -1.017245 0.311680 -0.437684 0.338728 1.034527 -0.415528 -0.646984 -0.121626 0.589435 -0.977225 0.099942 -1.296171 0.022671 0.946574 0.204963 0.297055 -0.394868 0.028115 -0.021189 -0.448692 0.421286 0.156809 -0.332004 0.177866 0.074233 0.299713 0.148349 1.104055 -0.172720 0.292706 0.727035 0.847151 0.024006 -0.826570 -1.038778 -0.568059 -0.460914 -1.290872 -0.294531 0.663751 -0.646503 0.499024 -0.804777 -0.402926 -0.292201 0.348031 0.215414 0.043492 0.165281
-0.156019 0.405009 -0.370058 -1.417499 0.120639 -0.191854 -0.251213 -0.883898 -0.025010 0.150738 1.038723 0.038419 0.036411 -0.289871 0.588898 0.618994 0.087019 -0.275657 -0.105293 -0.536067 -0.181410 0.058034 0.552306 -0.389803 -0.384800 -0.470717 0.800593 -0.166609 0.702104 0.876092 0.353401 -0.314156 0.618290 0.804017 -0.925911 -1.002050 -0.231087 0.590011 -0.636952 -0.474758 0.169423 1.293482 0.609088 -0.956202 -0.013831 0.399147 0.436669 0.116759 -0.501962 1.308268
-0.008573 -0.731185 -1.108792 -0.358545 0.507277 -0.050167 0.751870 0.217678 -0.646852 -0.947062 -1.187739 0.490993 -1.500471 0.463113 1.370237 0.218072 0.213489 -0.362163 -0.758691 -0.670870 0.218470 1.641174 0.293220 0.254524 0.085781 0.464454 0.196361 -0.693989 -0.384305 -0.171888 0.045602 1.476064 0.478454 0.726961 -0.642484 -0.266562 -0.846778 0.125562 -0.787331 -0.438503 0.954193 -0.859042 -0.180915 -0.944969 -0.447460 0.036127 0.654763 0.439739 -0.038052 0.991638""".split("\n")
wvs = load_word_vector_mapping(vocab, vector)
assert "UUUNKKK" in wvs
assert allclose(wvs["UUUNKKK"], array([0.172414, -0.091063, 0.255125, -0.837163, 0.434872, -0.499848, -0.042904, -0.059642, -0.635087, -0.458795, -0.105671, 0.506513, -0.105105, -0.405678, 0.493365, 0.408807, 0.401635, -0.817805, 0.626340, 0.580636, -0.246996, -0.008515, -0.671140, 0.301865, -0.439651, 0.247694, -0.291402, 0.873009, 0.216212, 0.145576, -0.211101, -0.352360, 0.227651, -0.118416, 0.371816, 0.261296, 0.017548, 0.596692, -0.485722, -0.369530, -0.048807, 0.017960, -0.040483, 0.111193, 0.398039, 0.162765, 0.408946, 0.005343, -0.107523, -0.079821]))
assert "the" in wvs
assert "of" in wvs
assert "and" in wvs
def window_iterator(seq, n=1, beg="<s>", end="</s>"):
"""
Iterates through seq by returning windows of length 2n+1
"""
for i in range(len(seq)):
l = max(0, i-n)
r = min(len(seq), i+n+1)
ret = seq[l:r]
if i < n:
ret = [beg,] * (n-i) + ret
if i+n+1 > len(seq):
ret = ret + [end,] * (i+n+1 - len(seq))
yield ret
def test_window_iterator():
assert list(window_iterator(list("abcd"), n=0)) == [["a",], ["b",], ["c",], ["d"]]
assert list(window_iterator(list("abcd"), n=1)) == [["<s>","a","b"], ["a","b","c",], ["b","c","d",], ["c", "d", "</s>",]]
def one_hot(n, y):
"""
Create a one-hot @n-dimensional vector with a 1 in position @i
"""
if isinstance(y, int):
ret = zeros(n)
ret[y] = 1.0
return ret
elif isinstance(y, list):
ret = zeros((len(y), n))
ret[np.arange(len(y)),y] = 1.0
return ret
else:
raise ValueError("Expected an int or list got: " + y)
def to_table(data, row_labels, column_labels, precision=2, digits=4):
"""Pretty print tables.
Assumes @data is a 2D array and uses @row_labels and @column_labels
to display table.
"""
# Convert data to strings
data = [["%04.2f"%v for v in row] for row in data]
cell_width = max(
max(map(len, row_labels)),
max(map(len, column_labels)),
max(max(map(len, row)) for row in data))
def c(s):
"""adjust cell output"""
return s + " " * (cell_width - len(s))
ret = ""
ret += "\t".join(map(c, column_labels)) + "\n"
for l, row in zip(row_labels, data):
ret += "\t".join(map(c, [l] + row)) + "\n"
return ret
class ConfusionMatrix(object):
"""
A confusion matrix stores counts of (true, guessed) labels, used to
compute several evaluation metrics like accuracy, precision, recall
and F1.
"""
def __init__(self, labels, default_label=None):
self.labels = labels
self.default_label = default_label if default_label is not None else len(labels) -1
self.counts = defaultdict(Counter)
def update(self, gold, guess):
"""Update counts"""
self.counts[gold][guess] += 1
def as_table(self):
"""Print tables"""
# Header
data = [[self.counts[l][l_] for l_,_ in enumerate(self.labels)] for l,_ in enumerate(self.labels)]
return to_table(data, self.labels, ["go\\gu"] + self.labels)
def summary(self, quiet=False):
"""Summarize counts"""
keys = range(len(self.labels))
data = []
macro = array([0., 0., 0., 0.])
micro = array([0., 0., 0., 0.])
default = array([0., 0., 0., 0.])
for l in keys:
tp = self.counts[l][l]
fp = sum(self.counts[l_][l] for l_ in keys if l_ != l)
tn = sum(self.counts[l_][l__] for l_ in keys if l_ != l for l__ in keys if l__ != l)
fn = sum(self.counts[l][l_] for l_ in keys if l_ != l)
acc = (tp + tn)/(tp + tn + fp + fn) if tp > 0 else 0
prec = (tp)/(tp + fp) if tp > 0 else 0
rec = (tp)/(tp + fn) if tp > 0 else 0
f1 = 2 * prec * rec / (prec + rec) if tp > 0 else 0
# update micro/macro averages
micro += array([tp, fp, tn, fn])
macro += array([acc, prec, rec, f1])
if l != self.default_label: # Count count for everything that is not the default label!
default += array([tp, fp, tn, fn])
data.append([acc, prec, rec, f1])
# micro average
tp, fp, tn, fn = micro
acc = (tp + tn)/(tp + tn + fp + fn) if tp > 0 else 0
prec = (tp)/(tp + fp) if tp > 0 else 0
rec = (tp)/(tp + fn) if tp > 0 else 0
f1 = 2 * prec * rec / (prec + rec) if tp > 0 else 0
data.append([acc, prec, rec, f1])
# Macro average
data.append(macro / len(keys))
# default average
tp, fp, tn, fn = default
acc = (tp + tn)/(tp + tn + fp + fn) if tp > 0 else 0
prec = (tp)/(tp + fp) if tp > 0 else 0
rec = (tp)/(tp + fn) if tp > 0 else 0
f1 = 2 * prec * rec / (prec + rec) if tp > 0 else 0
data.append([acc, prec, rec, f1])
# Macro and micro average.
return to_table(data, self.labels + ["micro","macro","not-O"], ["label", "acc", "prec", "rec", "f1"])
class Progbar(object):
"""
Progbar class copied from keras (https://github.com/fchollet/keras/)
Displays a progress bar.
# Arguments
target: Total number of steps expected.
interval: Minimum visual progress update interval (in seconds).
"""
def __init__(self, target, width=30, verbose=1):
self.width = width
self.target = target
self.sum_values = {}
self.unique_values = []
self.start = time.time()
self.total_width = 0
self.seen_so_far = 0
self.verbose = verbose
def update(self, current, values=None, exact=None):
"""
Updates the progress bar.
# Arguments
current: Index of current step.
values: List of tuples (name, value_for_last_step).
The progress bar will display averages for these values.
exact: List of tuples (name, value_for_last_step).
The progress bar will display these values directly.
"""
values = values or []
exact = exact or []
for k, v in values:
if k not in self.sum_values:
self.sum_values[k] = [v * (current - self.seen_so_far), current - self.seen_so_far]
self.unique_values.append(k)
else:
self.sum_values[k][0] += v * (current - self.seen_so_far)
self.sum_values[k][1] += (current - self.seen_so_far)
for k, v in exact:
if k not in self.sum_values:
self.unique_values.append(k)
self.sum_values[k] = [v, 1]
self.seen_so_far = current
now = time.time()
if self.verbose == 1:
prev_total_width = self.total_width
sys.stdout.write("\b" * prev_total_width)
sys.stdout.write("\r")
numdigits = int(np.floor(np.log10(self.target))) + 1
barstr = '%%%dd/%%%dd [' % (numdigits, numdigits)
bar = barstr % (current, self.target)
prog = float(current)/self.target
prog_width = int(self.width*prog)
if prog_width > 0:
bar += ('='*(prog_width-1))
if current < self.target:
bar += '>'
else:
bar += '='
bar += ('.'*(self.width-prog_width))
bar += ']'
sys.stdout.write(bar)
self.total_width = len(bar)
if current:
time_per_unit = (now - self.start) / current
else:
time_per_unit = 0
eta = time_per_unit*(self.target - current)
info = ''
if current < self.target:
info += ' - ETA: %ds' % eta
else:
info += ' - %ds' % (now - self.start)
for k in self.unique_values:
if isinstance(self.sum_values[k], list):
info += ' - %s: %.4f' % (k, self.sum_values[k][0] / max(1, self.sum_values[k][1]))
else:
info += ' - %s: %s' % (k, self.sum_values[k])
self.total_width += len(info)
if prev_total_width > self.total_width:
info += ((prev_total_width-self.total_width) * " ")
sys.stdout.write(info)
sys.stdout.flush()
if current >= self.target:
sys.stdout.write("\n")
if self.verbose == 2:
if current >= self.target:
info = '%ds' % (now - self.start)
for k in self.unique_values:
info += ' - %s: %.4f' % (k, self.sum_values[k][0] / max(1, self.sum_values[k][1]))
sys.stdout.write(info + "\n")
def add(self, n, values=None):
self.update(self.seen_so_far+n, values)
def get_minibatches(data, minibatch_size, shuffle=True):
"""
Iterates through the provided data one minibatch at at time. You can use this function to
iterate through data in minibatches as follows:
for inputs_minibatch in get_minibatches(inputs, minibatch_size):
...
Or with multiple data sources:
for inputs_minibatch, labels_minibatch in get_minibatches([inputs, labels], minibatch_size):
...
Args:
data: there are two possible values:
- a list or numpy array
- a list where each element is either a list or numpy array
minibatch_size: the maximum number of items in a minibatch
shuffle: whether to randomize the order of returned data
Returns:
minibatches: the return value depends on data:
- If data is a list/array it yields the next minibatch of data.
- If data a list of lists/arrays it returns the next minibatch of each element in the
list. This can be used to iterate through multiple data sources
(e.g., features and labels) at the same time.
"""
list_data = type(data) is list and (type(data[0]) is list or type(data[0]) is np.ndarray)
data_size = len(data[0]) if list_data else len(data)
indices = np.arange(data_size)
if shuffle:
np.random.shuffle(indices)
for minibatch_start in np.arange(0, data_size, minibatch_size):
minibatch_indices = indices[minibatch_start:minibatch_start + minibatch_size]
yield [minibatch(d, minibatch_indices) for d in data] if list_data \
else minibatch(data, minibatch_indices)
def minibatch(data, minibatch_idx):
return data[minibatch_idx] if type(data) is np.ndarray else [data[i] for i in minibatch_idx]
def minibatches(data, batch_size, shuffle=True):
batches = [np.array(col) for col in zip(*data)]
return get_minibatches(batches, batch_size, shuffle)
def print_sentence(output, sentence, labels, predictions):
spacings = [max(len(sentence[i]), len(labels[i]), len(predictions[i])) for i in range(len(sentence))]
# Compute the word spacing
output.write("x : ")
for token, spacing in zip(sentence, spacings):
output.write(token)
output.write(" " * (spacing - len(token) + 1))
output.write("\n")
output.write("y*: ")
for token, spacing in zip(labels, spacings):
output.write(token)
output.write(" " * (spacing - len(token) + 1))
output.write("\n")
output.write("y': ")
for token, spacing in zip(predictions, spacings):
output.write(token)
output.write(" " * (spacing - len(token) + 1))
output.write("\n")