-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFunctions1.py
745 lines (646 loc) · 46.6 KB
/
Functions1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 13 17:09:53 2021
@author: Maud
"""
import numpy as np
import pandas as pd
import os, time
from scipy import optimize
from scipy import stats as stat
#This is to avoid warnings being printed to the terminal window
import warnings
warnings.filterwarnings('ignore')
#%%
def LR_retransformation(transformed_LR = 1.3):
original_LR = np.exp(transformed_LR)/(1+np.exp(transformed_LR))
return original_LR
def InverseT_retransformation(transformed_InverseT = 3):
original_InverseT = np.exp(transformed_InverseT)
return original_InverseT
#%% Functions that are used within other functions in this 'functions' script
def generate_parameters(mean = 0.5, std = 0.1, npp = 1, multivariate = False, corr = False):
"""
Parameters
----------
mean : float or int, optional
The mean value of the normal distribution from which parameters are drawn. The default is 0.5.
std : float or int, optional
The standard deviation of the normal distribution from which parameters are drawn. The default is 0.1.
size : float, optional
The number of parameters that are drawn from the normal distribution. The default is 1.
multivariate: boolean, optional
Put to true for the external correlation criterion such that values are drawn from multivariate normal distribution. The default is False.
corr: boolean or float, optional
The correlation for the external correlation criterion. For other criterions this is ignored. The default is False.
Returns
-------
parameters : numpy array
Array with shape ('size',) containing the parameters drawn from the normal distribution.
Description
-----------
Function to draw 'npp' parameters from a normal distribution with mean 'mean' and standard deviation 'std'.
Function is used to generate learning rate and inverse temperature parameters for each participant.
No parameters get a value lower than or equal to 0.
When the criterion is external correlation, learning rate and the external measure are drawn from a multivariate normal distribution.
Here, the correlation is specified in the covariance matrix."""
if multivariate:
# draw 'npp' values from multivariate normal distribution with mean 'mean', standard deviation 'std' and correlation 'cor'
parameters =np.round(np.random.multivariate_normal([mean, 0], np.array([[corr*std, std], [std, corr*std]]), npp),3)
# while-loop: ensure no learning rate parameters get a value smaller than or equal to 0
while np.any(parameters[:,0] <= 0):
to_replace = np.where(parameters[:,0] <= 0)[0]
parameters[to_replace, :] = np.round(np.random.multivariate_normal([mean, 0], np.array([[corr*std, std], [std, corr*std]]), len(to_replace)),3)
else:
# draw 'npp' values from normal distribution with mean 'mean' and standard deviation 'std'
parameters = np.round(np.random.normal(loc = mean, scale = std, size = npp), 3)
# while-loop: ensure no parameters get a value smaller than or equal to 0
while np.any(parameters <= 0):
parameters = np.where(parameters <= 0,
np.round(np.random.normal(loc = mean, scale = std, size = 1), 3),
parameters)
return parameters # shape ('npp',)
def softmax(values = np.array([0.5, 0.5]), inverse_temperature = 1):
"""
Parameters
----------
values : numpy array, optional
The activation level for the possible responses.
The default is np.array([0.5, 0.5]).
inverse_temperature : TYPE, optional
The amount of randomness in the responses; lower inverse temperature = more randomness.
The default is 1.
Returns
-------
response_probabilities : numpy array
The probability with which each response option will be chosen (sum of the probabilities = 1).
Description
-----------
The softmax function returns the probability of choosing each response option. In general, the option with the highest value has the highest probability to be chosen.
The inverse temperature parameter captures the weight given to the value difference between the two response options. With a low inverse temperature,
more weight is given to the option with the highest value ('exploiting the best option'). A higher inverse tempererature relies more on 'exploration in order to find better options',
thus increases the probability of choosing the lower value option.
The softmax function is: probability(response X) = exp(value_responseX*inverse_temperature) / (exp(value_response0*inverse_temperature) + exp(value_response1*inverse_temperature)) with X = 0 or x = 1."""
# softmax function
response_probabilities = np.exp(values*inverse_temperature) / np.sum((np.exp(values*inverse_temperature)))
return response_probabilities
def choose_response(response_probabilities = np.array([0.5, 0.5])):
"""
Parameters
----------
response_probabilities : numpy array, optional
The probabilities for choosing each of the two responses. The default is np.array([0.5, 0.5]).
Returns
-------
response : integer (0 or 1)
Which of the two responses is actually chosen: response 0 or response 1.
Description
-----------
Function to actually choose response 0 or 1. This function randomly generates a value between 0 and 1.
If this value is smaller than or equal to the probability to choose response 1 (response_probabilities[1]), then response 1 is chosen.
If this value is larger than the probability to choose response 1, response 0 is chosen."""
response = (np.random.random() <= response_probabilities[1])*1
#sortresps = np.argsort(response_probabilities)[::-1]
#response = sortresps[np.where(np.random.random() <= np.cumsum(response_probabilities[sortresps]))[0][0]]
return response
def delta_rule(previous_value = 0.0, obtained_reward = 1.0, LR = 0.1):
"""
Parameters
----------
previous_value : float, optional
The value of the chosen response given the stimulus on this trial before reward was or was not delivered.
obtained_reward : float (0.0 or 1.0), optional
Indicates whether reward was received at this trial. Will be used to calculate the prediction error (PE) (= reward - previous_value)
LR : float, optional
The learning rate (LR) is a scaling factor, which defines the scale with which the PE will be used to update the value of the chosen response.
Returns
-------
PE : float
The discrepancy between the expected_reward (previous_value) and the obtained reward.
updated_value : float
The new value for the chosen response given this stimulus, after updating the value according to the delta-learning rule.
Description
-----------
Function to update the value of the stimulus-response pair based on the current value of this stimulus-response pair and the reward obtained on this trial.
The value is updated using the delta-learning rule:
Q(s,a) at time t+1 = Q(s,a) at time t + LR * PE at time t (with PE = reward at time t - Q(s,a) at time t)."""
#Calculate the prediction error:
PE = obtained_reward - previous_value #PE = R(t-1) - V(s, a)(t-1)
# calculate the new value for this stimulus-response pair
updated_value = np.sum([previous_value, np.multiply(PE, LR)]) # V(s, a)t = V(s, a)(t-1) + PE*LR
return PE, updated_value
def simulate_responses(simulation_LR = 0.5, simulation_inverseTemp = 1, design = None):
"""
Parameters
----------
simulation_LR : float, optional
Value for the learning rate parameter that will be used to simulate data for this participant. The default is 0.5.
simulation_inverseTemp : float, optional
Value for the inverse temperature parameter that will be used to simulate data for this participant. The default is 1.
design : numpy array, shape = (ntrials X 5)
Design that will be used to simulate data for this participant. The design should be a numpy array of size (number of trials X 5).
Its columns are: [stimulus-response mapping rule, stimulus, response, correct response, feedback congruence].
The stimulus-response mapping rule column should contain a value of 0 or 1 for each trial (= rule 0 or rule 1)
The stimulus column should contain a value of 0 or 1 for each trial (= stimulus 0 or stimulus 1)
The response column should be empty still, data has not yet been generated.
The correct response column should contain which response would be correct on this trial; this depends on the stimulus-response mapping rule and the stimulus for that trial.
The feedback congruencey column should contain a value of 0 or 1 on each trial with 0 = 'feedback is not in line with the current stimulus-response mapping rule' and 1 = 'feedback is in line with the current stimulus-response mapping rule'.
Returns
-------
responses : numpy array (with elements of type integer), shape = (ntrials,)
Array containing the responses simulated by the model for this participant.
Description
-----------
Function to simulate a response on each trial for a given participant with LR = simulation_LR and inverseTemperature = simulation_inverseTemp.
The design used for data generation for this participant should also be used for parameter estimation for this participant when running the function 'likelihood_estimation'."""
# responses: array that will contain the responses on each trial
responses = np.array([])
ntrials = design.shape[0]
# values: array containing four values, one for each stimulus-response pair!
# [[stimulus0 & response0, stimulus0 & response1], [stimulus1 & response0, stimulus1 & response1]]
values = np.array([[0.5, 0.5], [0.5, 0.5]])
##alternatively: np.ones(nstim, nresp)*0.5
# trial-loop: generate a response on each trial sequentially
for trial in range(ntrials):
#Define the variables you'll need for this trial (take them from the design)
stimulus = np.int(design[trial, 1]) # the stimulus that appears this trial
CorResp = np.int(design[trial, 3]) # the correct response on this trial (depends on the stimulus-response mapping rule on this trial)
FBcon = design[trial, 4] # feedback congruence on this trial: FB is congruent with the current stimulus-response mapping rule if FBCon = 1
#Simulate the response given by the hypothetical participant. Depending on the value for each response and the inverse_temperature parameter.
# define which weights are of importance on this trial: depends on which stimulus "appears"
stimulus_weights = values[stimulus, :]
# compute probability of each action on this trial (using the weights for each action with the stimulus of this trial)
response_probabilities = softmax(values = stimulus_weights, inverse_temperature = simulation_inverseTemp)
# define which action is actually chosen (based on the probabilities)
response = choose_response(response_probabilities = response_probabilities)
# store the response given on this trial
responses = np.append(responses, response)
#Update the value of the response-action pair that was relevant this trial (stimulus shown & response given)
#define whether reward was received this trial or not: reward present when:
# a) response = correct response and FB congruence = 1 (congruent)
# b) response != correct response and FB congruence = 0 (incongruent)
reward_present = ((response == CorResp and FBcon == 1) or (response != CorResp and FBcon == 0))*1
reward_present = np.float(reward_present)
#compute the PE and the updated value for this trial (and this stimulus-response pair)
# to compute the PE & updated value, just work with whether reward was present or not
PE, updated_value = delta_rule(previous_value=values[stimulus, response],
obtained_reward=reward_present, LR=simulation_LR)
#update the value of the stimulus-response pair that was used this trial
values[stimulus, response] = updated_value
return responses
def likelihood(parameter_set, data):
"""
Parameters
----------
parameter_set : numpy array, shape = (2,)
Contains the current estimates for each parameter used to calculate the likelihood of the data given this parameter set.
Contains two values: parameter_set[0] = learning rate, parameter_set[1] = inverse_temperature
data : numpy array, shape = (ntrials X 5)
Data that will be used to estimate the likelihood of the data given the current parameter set. The data should be a numpy array of size (number of trials X 5).
Its columns are: [stimulus-response mapping rule, stimulus, response, correct response, feedback congruence].
The stimulus-response mapping rule column should contain a value of 0 or 1 for each trial (= rule 0 or rule 1)
The stimulus column should contain a value of 0 or 1 for each trial (= stimulus 0 or stimulus 1)
The response column should contain the simulated responses for the current hypothetical participant (simulated with the function simulate_responses).
The correct response column should contain which response would be correct on this trial; this depends on the stimulus-response mapping rule and the stimulus for that trial.
The feedback congruencey column should contain a value of 0 or 1 on each trial with 0 = 'feedback is not in line with the current stimulus-response mapping rule' and 1 = 'feedback is in line with the current stimulus-response mapping rule'.
Importantly, columns 0, 1, 3 and 4 should be exactly the same as the design matrix used to simulate the responses for this hypothetical participant.
Returns
-------
-summed_logL : float
The negative summed log likelihood of the data given the current parameter set. This value will be used to select
the next parameter set that will be evaluated. The goal is to find the most optimal parameters given the data,
the parameters for which the -summed_logL of all responses is minimal.
Description
-----------
Function to estimate the likelihood of the parameter set under consideration (learning_rate and inverse_temperature) given the data: L(parameter set|data).
The design is exactly the same as the design used to simulate_data for this hypothetical participant, but now the simulated responses are included as well.
On each trial: L(parameter set|current response) = P(current response|parameter set). This probability is calculated using the softmax choice rule:
P(responseX) = exp(value_responseX*inverse_temperature) / (exp(value_response0*inverse_temperature) + exp(value_response1*inverse_temperature)) with X = current response (0 or 1).
This probability depends on the LR since this defines the value_responseX and on the inverse_temperature since this is part of the softmax function.
Over trials: summed log likelihood = sum(log(L(parameter set | current response))) with the best fitting parameter set yielding the highest summed logL.
The function returns -summed_LogL because the optimization function that will be used to find the most likely parameters given the data searches for the minimum value for this likelihood function.
"""
#First retransform the transformedLR to the originalLR
retransformed_LR = LR_retransformation(parameter_set[0])
retransformed_invT = InverseT_retransformation(parameter_set[1])
#Prepare the likelihood estimation process: make sure all relevant variables are defined
# the start values for each stimulus-response pair: these are the same as in the simulate_responses function
values = np.array([[0.5, 0.5], [0.5, 0.5]])
ntrials = data.shape[0] # deduce number of trials within the experiment from the length of the design matrix
# Define the response accuracy on each trial: (responses == correct_responses)*1
# remember: correct_responses depends on the stimulus-response mapping rule and does not necessarily mean reward is delivered
# 0 = incorrect response, 1 = correct response
Accuracy = (data[:, 2] == data[:, 3])*1
# Define whether reward was received each trial: (accuracy = FBcongruence)*1
# if FBCon = 1: reward is received on trials where a correct response was given
# if FBCon = 0: reward is received on trials where an incorrect resposne was given
# 0 = no reward received, 1 = reward received
actual_rewards = (Accuracy == data[:, 4])*1
actual_responses = data[:, 2] # the participants' responses (obtained with the simulate_responses function)
stimuli = data[:, 1] # the stimuli that were shown each trial
#Start the likelihood estimation process: summed_logL = log(L(parameter set|data))
# log(L(parameter set|data)) = sum( log( L(parameter set|response) ) for trial in trials)
summed_logL = 0 # this is calculated by summing over trials the log( L(parameter set|response on that trial) )
# trial-loop: calculate log(L(parameter set|response)) on each trial
for trial in range(ntrials):
#Define the variables that are important for the likelihood estimation process
stimulus = int(stimuli[trial]) #the stimulus shown on this trial
response = actual_responses[trial].astype(int) #the response given on this trial
reward_this_trial = actual_rewards[trial] #the reward presence or absence on this trial
#Calculate the loglikelihood: log(L(parameter set|response)) = log(P(response|parameter set))
#select the correct response_values given the stimulus on this trial
stimulus_weights = values[stimulus, :]
#log(P(response|parameter set)) = log(exp(value_responseX*inverse_temperature) / (exp(value_response0*inverse_temperature) + exp(value_response1*inverse_temperature)) with X = current response (0 or 1))
# which can be simplified to: value_responseX*inverse_temperature - log(exp(value_response0*inverse_temperature) + exp(value_response1*inverse_temperature)) with X = current response
# used mathematical rule: log( exp(x) / (exp(x)+exp(y)) ) = x - log(exp(x)+exp(y))
#probabilities = np.exp(loglikelihoods) --> this has to be equal to 1
# this to ensure no overflows are encountered in the estimation process
if np.abs(retransformed_invT) > 99:
# loglikelihoods = np.array([-999, -999])
summed_logL = -9999
break
else: loglikelihoods = stimulus_weights*retransformed_invT - np.log(np.sum((np.exp(stimulus_weights[0]*retransformed_invT)+np.exp(stimulus_weights[1]*retransformed_invT))))
#then select the probability of the actual response given the parameter set
current_loglikelihood = loglikelihoods[response]
#Add L(parameter set|current response) to the total log likelihood
summed_logL = summed_logL + current_loglikelihood
#Values are updated with current_learning_rate
#Update the value for the relevant stimulus-response pair using the delta rule
# (since this influences the probability of the responses on the next trials)
PE, updated_value = delta_rule(previous_value = values[stimulus, response],
obtained_reward = reward_this_trial,
LR = retransformed_LR)
values[stimulus, response] = updated_value
return -summed_logL
#%% Functions used in the PowerAnalysis script
def create_design(ntrials = 480, nreversals = 1, reward_probability = 0.8):
"""
Parameters
----------
ntrials : integer, optional
The number of trials that will be used in the experiment. The default is 480.
nreversals : integer, optional
The number of rule-reversals that will occur in the experiment. Should be smaller than ntrials.
The default is 1.
reward_probability : float (element within [0, 1]), optional
The probability that reward will be congruent with the current stimulus-response mapping rule. The default is 0.8.
Returns
-------
design : numpy array, shape = (ntrials X 5)
Array defining the relevant variables on each trial.
Column 0 = Stimulus-response mapping rule for each trial (0 or 1: rule0 or rule1)
Column 1 = Appearing stimulus on each trial (0 or 1 : stimulus0 or stimulus1)
Column 2 = Empty column, will be used to fill in which response was given each trial AFTER data generation
Column 3 = Correct response on each trial: depends on the stimulus and the rule (0 or 1 : response0 or response1)
Column 4 = Feedback congruence on each trial: whether feedback (reward or not) is congruent with the current stimulus-response mapping rule.
If not, one is rewarded for an incorrect response. (0 or 1 : incongruent or congruent)
Description
-----------
Function to create the design that will be used for (1) data simulation and (2) parameter estimation.
For both these processes the stimulus, correct response and feedback congruence on each trial have to be defined.
Since the correct response depends on the stimulus-response mapping rule, this rule has to be defined as well.
Stimulus-response mapping rule: the rule that the participant has to learn in order to maximize reward
- rule 0: stimulus0 = response1, stimulus1 = response0; rule 1: stimulus0 = response0, stimulus1 = response1
- the number of rule reversals are specified in the create_design function.
Stimulus: the stimulus shown each trial
- in 50% of the trials stimulus0 appears, in 50% of the trials stimulus1
Response: the response given on each trial
- empty column of size ntrials, will be filled in after data simulation
Correct response: the correct response on each trial
- depends on the stimulus-response mapping rule for this trial
Feedback congruence: whether feedback is congruent or incongruent with the current stimulus-response action mapping rule
- depends on the reward_probability defined by the used: if reward_probability = 0.80, then the feedback will be congruent in 80% of the trials
"""
# Create the template for the design: a pandas dataframe of shape (ntrials X 5)
design_df = pd.DataFrame(index = range(ntrials),
columns = ['rule', 'stimulus', 'response', 'CorResp', 'FBCon'], dtype = int)
# Column 0: define the stimulus-response mapping rule for each trial
# complicated functions: with ntrials%(nreversals+1) !=0, we want the number of trials before a reversal to be roughly the same (with max. 1 trial difference)
nchanges = nreversals+1
nrule_repetitions = int(ntrials/nchanges)
rest = ntrials%nchanges
x1 = np.tile(np.repeat([0, 1], nrule_repetitions), int(np.ceil((nchanges-rest)/2)))[:nrule_repetitions*(nchanges-rest)]
if x1[-1] == 1: x2 = np.tile(np.repeat([0, 1], nrule_repetitions+1), int(np.ceil(rest/2)))[:(nrule_repetitions+1)*rest]
else: x2 = np.tile(np.repeat([1, 0], nrule_repetitions+1), int(np.ceil(rest/2)))[:(nrule_repetitions+1)*rest]
design_df['rule'] = np.concatenate([x1, x2])
# Column 1: define which stimulus is shown each trial
# each stimulus appears in 50% of the trials, in a random sequence
stimuli = np.concatenate([np.zeros(int(np.floor(ntrials/2))), np.ones(int(np.ceil(ntrials/2)))]).astype(int)
np.random.shuffle(stimuli)
design_df['stimulus'] = stimuli
# Column 3: define the correct response at each trial
#correct response depends on the stimulus-response mapping rule
for trial in range(design_df.shape[0]):
if design_df.loc[trial, 'rule'] == 1: design_df.loc[trial, 'CorResp'] = design_df.loc[trial, 'stimulus']
else: design_df.loc[trial, 'CorResp'] = (not design_df.loc[trial, 'stimulus'])*1
# Column 4: define the feedback congruence at each trial
# feedback is congruent in i% of the trials with i = reward_probability*100
ncongruent = int(np.round(ntrials*reward_probability, 0))
FBcon_array = np.concatenate([np.ones(ncongruent), np.zeros(ntrials-ncongruent)])
np.random.shuffle(FBcon_array)
design_df['FBCon'] = FBcon_array
# Convert the design dataframe to a design array, since arrays are computationally less demanding
design = design_df.to_numpy(dtype = int)
return design
def Incorrelation_repetition(inverseTemp_distribution, LR_distribution, npp, ntrials, start_design, rep, nreps, ncpu):
"""
Parameters
----------
inverseTemp_distribution : numpy array, shape = (2,)
Defines the mean & standard deviation of the normal distribution that will be used to draw the true inverse Temperature values from for each hypothetical participant.
Mean of the distribution = inverseTemp_distribution[0], standard deviation of the distribution = inverseTemp_distribution[1]
LR_distribution : numpy array, shape = (2,)
Defines the mean & standard deviation of the normal distribution that will be used to draw the true learning rate values from for each hypothetical participant.
Mean of the distribution = LR_distribution[0], standard deviation of the distribution = LR_distribution[1].
npp : integer
Number of participants that will be used in the parameter recovery analysis.
ntrials : integer
Number of trials that will be used to do the parameter recovery analysis for each participant.
start_design : numpy array, shape = (ntrials X 5)
Design that will be used to simulate data for this repetition and to estimate the parameters as well.
For more details on this design see function create_design()
rep : integer
Which repetition of the power estimation process is being executed.
nreps: integer
The total amount of repetitions.
ncpu:
The amount of cpu available.
Returns
-------
Statistic : float
The correlation found between the true and recovered parameters this repetition.
Description
-----------
Function to execute the parameter recovery analysis (Internal correlation criterion) once.
This criterion prescribes that resources are sufficient when: correlation(true learning rates, recovered learning rates) >= certain cut-off.
Thus, the statistic of interest is: correlation(true learning rates, recovered learning rates). This statistic is returned for execution of this function (thus for each repetition).
In order to calculate the statistic the parameter recovery analysis has to be completed. This analysis consists of several steps:
1. Create 'npp' hypothetical participants by defining 'npp' parameter sets.
A parameter set consists of a value for the learning rate and a value for the inverse temperature.
One population is assumed with the following parameter distributions:
- learning rates ~ N(mean, sd)
--> mean = LR_distribution[0], sd = LR_distribution[1]
- inverse temperatures ~ N(mean, sd)
--> mean = Temperature_distribution[0], sd = Temperature_distribution[1]
2. Simulate data for each hypothetical participant (thus each parameter set)
This is done by simulating responses using the Rescorla-Wagner model (RW-model) with the values of the free parameters = the parameter set of this hypothetical participant.
This basic RW-model incorporates a delta-learning rule and a softmax choice rule.
(for details on the basic RW-model see ... (github-link naar ReadME))
3. Estimate the best fitting parameter set given the simulated data: best fitting parameter set = 'recovered parameter values'
This is done using the Maximum log-Likelihood estimation process in combination with the basic RW-model: iteratively estimating the log-likelihood of different parameter values given the data.
The parameter set with the highest log-likelihood given the data is selected. For more details on the likelihood estimation process see function 'likelihood'.
4. Calculate the Statistic of interest for this repetition of the parameter recovery analysis.
The statistic that is calculated here is correlation(true learning rates, recovered learning rates).
If this function is repeated a number of times and the value of the Statistic is stored each time, we can evaluate later on the power or probability to meet the proposed parameter recovery criterion (the internal correlation criterion) in a single study.
"""
if rep == 0:
t0 = time.time()
####PART 1: parameter generation for all participants####
# Define the True params that will be used for each pp in this rep
True_LRs = generate_parameters(mean = LR_distribution[0], std = LR_distribution[1], npp = npp)
True_inverseTemps = generate_parameters(mean = inverseTemp_distribution[0], std = inverseTemp_distribution[1], npp = npp)
# loop over all pp. to do the data generation and parameter estimation
# create array that will contain the final LRestimate for each participant this repetition
LRestimations = np.empty(npp)
invTestimations = np.empty(npp)
for pp in range(npp):
####Part 2: Data simulation for this participant####
# generate the responses for this participant
responses = simulate_responses(simulation_LR=True_LRs[pp], simulation_inverseTemp=True_inverseTemps[pp],
design=start_design)
# fill in the responses of this participant into the start design, in order to use this later in param. estimation
start_design[:, 2] = responses
####Part 3: parameter estimation for this participant####
start_params = np.random.uniform(-4.5, 4.5), np.random.uniform(-4.6, 2)
optimization_output = optimize.minimize(likelihood, start_params, args =(tuple([start_design])),
method = 'Nelder-Mead',
options = {'maxfev':1000, 'xatol':0.01, 'return_all':1})
estimated_parameters = optimization_output['x']
estimated_LR = LR_retransformation(estimated_parameters[0])
estimated_invT = InverseT_retransformation(estimated_parameters[1])
LRestimations[pp] = estimated_LR
invTestimations[pp] = estimated_invT
####Part 4: correlation between true & estimated learning rates####
# if the estimation failed for a certain participant, delete this participant from the correlation estimation for this repetition
Statistic = np.round(np.corrcoef(True_LRs, LRestimations)[0, 1], 2)
if rep == 0:
t1 = time.time() - t0
estimated_seconds = t1 * np.ceil(nreps / ncpu)
estimated_time = np.ceil(estimated_seconds / 60)
print("\nThe power analysis will take ca. {} minutes".format(estimated_time))
# return proportion_failed_estimates, Statistic
return Statistic
def groupdifference_repetition(inverseTemp_distributions, LR_distributions, npp_per_group,
ntrials, start_design, rep, nreps, ncpu, standard_power = False):
"""
Parameters
----------
inverseTemp_distribution : numpy array, shape = (2,)
Defines the mean & standard deviation of the normal distribution that will be used to draw the true inverse Temperature values from for each hypothetical participant.
Mean of the distribution = inverseTemp_distribution[0], standard deviation of the distribution = inverseTemp_distribution[1]
LR_distributions : numpy array, shape = (2 x 2)
Defines the mean & standard deviation of the normal distributions that will be used to draw the learning rates from for each hypothetical participant.
Mean of the distribution for group 0 = LR_distribution[0, 0], standard deviation of the distribution for group 0 = LR_distribution[0, 1].
Mean of the distribution for group 1 = LR_distribution[1, 0], standard deviation of the distribution for group 1 = LR_distribution[1, 1].
npp_per_group : integer
Number of participants in each group that will be used in the parameter recovery analysis.
ntrials : integer
Number of trials that will be used to do the parameter recovery analysis for each participant.
start_design : numpy array, shape = (ntrials X 5)
Design that will be used to simulate data for this repetition and to estimate the parameters as well.
For more details on this design see function create_design()
rep : integer
Which repetition of the power estimation process is being executed.
nreps: integer
The total amount of repetitions.
ncpu:
The amount of cpu available.
Returns
-------
pValue : float
Probability to find these recovered learning rate values within the two groups when the two groups would be drawn from the same distribution.
This probaility is calculated using a two-sample t-test comparing the recovered learning rates for group 0 and group 1.
Description
-----------
Function to execute the group difference statistic once.
This criterion prescribes that resources are sufficient when a significant group difference is found using the recovered parameters for all participants.
Thus, the statistic of interest is the p-value returned by a two-sample t-test comparing the recovered parameters of group 0 with the recovered parameters of group 1.
The group difference is statistically significant when the p-value is smaller than or equal to a specified cut_off (we use a one-sided t-test).
In order to calculate the statistic the parameter recovery analysis has to be completed. This analysis consists of several steps:
1. Create 'npp_per_group*2' hypothetical participants for group 0 and group 1 by defining 'npp_per_group*2' parameter sets.
A parameter set consists of a value for the learning rate and a value for the inverse temperature.
Two populations are assumed with the following true parameter distributions:
- learning rates (LRs) group G ~ N(mean, sd) with G = 0 for group 0 and G = 1 for group 1
--> mean = LR_distribution[G, 0], sd = LR_distribution[G, 1]
- inverse temperatures ~ N(mean, sd) for both groups
--> mean = Temperature_distribution[0], sd = Temperature_distribution[1]
npp_per_group parameter sets are created for group 0 and npp_per_group parameter estimates for group 1
2. Simulate data for each hypothetical participant (thus with each parameter set)
This is done by simulating responses using the basuc Rescorla-Wagner model (RW-model) with the values of the free parameters = the parameter set of this hypothetical participant.
This basic RW-model incorporates a delta-learning rule and a softmax choice rule.
(for details on the basic RW-model see ... (github-link naar ReadME))
3. Estimate the best fitting parameter set given the simulated data: best fitting parameter set = 'recovered parameter values'
This is done using the Maximum log-Likelihood estimation process in combination with the basic RW-model: iteratively estimating the log-likelihood of different parameter values given the data.
The parameter set with the highest log-likelihood given the data is selected. For more details on the likelihood estimation process see function 'likelihood'.
4. Calculate the Statistic of interest for this repetition of the parameter recovery analysis.
The statistic that is calculated here is the p-value associated with the T-statistic which is obtained by a two-sample t-test comparing the recovered LRs for group 0 with the recovered LRs for group 1.
If this function is repeated a number of times and the value of the Statistic is stored each time, we can evaluate later on the power or probability to meet the proposed parameter recovery criterion (group difference criterion) in a single study.
"""
if rep == 0:
t0 = time.time()
# create array that will contain the final LRestimate for each participant this repetition
LRestimations = np.empty([2, npp_per_group])
InvTestimations = np.empty([2, npp_per_group])
for group in range(2):
####PART 1: parameter generation for all participants####
# Define the True params that will be used for each pp in this rep
True_LRs = generate_parameters(mean = LR_distributions[group, 0], std = LR_distributions[group, 1], npp = npp_per_group)
True_inverseTemps = generate_parameters(mean = inverseTemp_distributions[group, 0], std = inverseTemp_distributions[group, 1], npp = npp_per_group)
# loop over all pp. to do the data generation and parameter estimation
for pp in range(npp_per_group):
####Part 2: Data simulation for this participant####
# generate the responses for this participant
responses = simulate_responses(simulation_LR=True_LRs[pp], simulation_inverseTemp=True_inverseTemps[pp],
design=start_design)
# fill in the responses of this participant into the start design, in order to use this later in param. estimation
start_design[:, 2] = responses
####Part 3: parameter estimation for this participant####
# use gradient descent to find the optimal parameters for this participant
start_params = np.random.uniform(-4.5, 4.5), np.random.uniform(-4.6, 2)
optimization_output = optimize.minimize(likelihood, start_params, args =(tuple([start_design])),
method = 'Nelder-Mead',
options = {'maxfev':1000, 'xatol':0.01, 'return_all':1})
estimated_parameters = optimization_output['x']
estimated_LR = LR_retransformation(estimated_parameters[0])
estimated_invT = InverseT_retransformation(estimated_parameters[1])
LRestimations[group, pp] = estimated_LR
InvTestimations[group, pp] = estimated_invT
# use two-sided then divide by to, this way we can use the same formula for HPC and non HPC
Statistic, pValue = stat.ttest_ind(LRestimations[0, :], LRestimations[1, :]) # default: alternative = two-sided
pValue = pValue/2 # because alternative = less does not exist in scipy version 1.4.0, yet we want a one-sided test
if rep == 0:
t1 = time.time() - t0
estimated_seconds = t1 * nreps / ncpu
estimated_time = np.ceil(estimated_seconds / 60)
print("\nThe power analysis will take ca. {} minutes".format(estimated_time))
return Statistic, pValue
def Excorrelation_repetition(inverseTemp_distribution, LR_distribution, true_correlation, npp, ntrials, start_design, rep, nreps, ncpu):
"""
Parameters
----------
inverseTemp_distribution : numpy array, shape = (2,)
Defines the mean & standard deviation of the normal distribution that will be used to draw the true inverse Temperature values from for each hypothetical participant.
Mean of the distribution = inverseTemp_distribution[0], standard deviation of the distribution = inverseTemp_distribution[1]
LR_distribution : numpy array, shape = (2,)
Defines the mean & standard deviation of the normal distribution that will be used to draw the true learning rate values from for each hypothetical participant.
Mean of the distribution = LR_distribution[0], standard deviation of the distribution = LR_distribution[1].
true_correlation: float
Defines the hypothesized correlation between the learning rate parameter and an external parameter.
npp : integer
Number of participants that will be used in the parameter recovery analysis.
ntrials : integer
Number of trials that will be used to do the parameter recovery analysis for each participant.
start_design : numpy array, shape = (ntrials X 5)
Design that will be used to simulate data for this repetition and to estimate the parameters as well.
For more details on this design see function create_design()
rep : integer
Which repetition of the power estimation process is being executed.
nreps: integer
The total amount of repetitions.
ncpu:
The amount of cpu available.
Returns
-------
Statistic : float
The correlation found between the external measure and recovered parameters this repetition.
pValue : float
The pvalue for this correlation.
Stat_true : float
The pvalue for the correlation between the external measure and true parameters. Indicating the power if estimations would be perfect.
Description
-----------
Function to execute the external correlation statistic once.
This criterion prescribes that resources are sufficient when: correlation(external measure, recovered learning rates) >= certain cut-off.
Thus, the statistic of interest is: correlation(measure, recovered learning rates). The correlation is statistically significant when the p-value is smaller than or equal to a specified cut_off.
In order to calculate the statistic the parameter recovery analysis has to be completed. This analysis consists of several steps:
1. Create 'npp' hypothetical participants by defining 'npp' parameter sets.
A parameter set consists of a value for the learning rate and a value for the inverse temperature.
Additionally, we sample some external measures by considering a multivariate normal distribution for learning rate and theta.
One population is assumed with the following parameter distributions:
2. Simulate data for each hypothetical participant (thus each parameter set)
This is done by simulating responses using the Rescorla-Wagner model (RW-model) with the values of the free parameters = the parameter set of this hypothetical participant.
This basic RW-model incorporates a delta-learning rule and a softmax choice rule.
(for details on the basic RW-model see ... (github-link naar ReadME))
3. Estimate the best fitting parameter set given the simulated data: best fitting parameter set = 'recovered parameter values'
This is done using the Maximum log-Likelihood estimation process in combination with the basic RW-model: iteratively estimating the log-likelihood of different parameter values given the data.
The parameter set with the highest log-likelihood given the data is selected. For more details on the likelihood estimation process see function 'likelihood'.
4. Calculate the Statistic of interest for this repetition of the analysis.
The statistic that is calculated here is correlation(measure, recovered learning rates).
If this function is repeated a number of times and the value of the Statistic is stored each time, we can evaluate later on the power or probability to meet the proposed parameter recovery criterion (the external correlation criterion) in a single study.
"""
if rep == 0:
t0 = time.time()
####PART 1: parameter generation for all participants####
# Define the True params that will be used for each pp in this rep
correlated_values = generate_parameters(mean = LR_distribution[0], std = LR_distribution[1], npp = npp, multivariate = True, corr = true_correlation)
True_LRs = correlated_values[:,0]
True_inverseTemps = generate_parameters(mean = inverseTemp_distribution[0], std = inverseTemp_distribution[1], npp = npp)
Theta = correlated_values[:,1]
# loop over all pp. to do the data generation and parameter estimation
# create array that will contain the final LRestimate for each participant this repetition
LRestimations = np.empty(npp)
invTestimations = np.empty(npp)
for pp in range(npp):
####Part 2: Data simulation for this participant####
# generate the responses for this participant
responses = simulate_responses(simulation_LR=True_LRs[pp], simulation_inverseTemp=True_inverseTemps[pp],
design=start_design)
# fill in the responses of this participant into the start design, in order to use this later in param. estimation
start_design[:, 2] = responses
####Part 3: parameter estimation for this participant####
start_params = np.random.uniform(-4.5, 4.5), np.random.uniform(-4.6, 2)
optimization_output = optimize.minimize(likelihood, start_params, args =(tuple([start_design])),
method = 'Nelder-Mead',
options = {'maxfev':1000, 'xatol':0.01, 'return_all':1})
estimated_parameters = optimization_output['x']
estimated_LR = LR_retransformation(estimated_parameters[0])
estimated_invT = InverseT_retransformation(estimated_parameters[1])
LRestimations[pp] = estimated_LR
invTestimations[pp] = estimated_invT
####Part 4: correlation between true & estimated learning rates####
# if the estimation failed for a certain participant, delete this participant from the correlation estimation for this repetition
Stat_true = stat.pearsonr(Theta, True_LRs)[1]
Stat = stat.pearsonr(Theta, LRestimations)
Statistic = Stat[0]
pValue = Stat[1]
if rep == 0:
t1 = time.time() - t0
estimated_seconds = t1 * np.ceil(nreps / ncpu)
estimated_time = np.ceil(estimated_seconds / 60)
print("\nThe power analysis will take ca. {} minutes".format(estimated_time))
# return proportion_failed_estimates, Statistic
return Statistic, pValue, Stat_true
#%%
def check_input_parameters(ntrials, nreversals, reward_probability, full_speed, criterion, output_folder):
variables_are_fine = 1
if ntrials < 5:
print("ntrials = {}; but minimal number of trials = 5.".format(ntrials))
variables_are_fine = 0
if nreversals >= ntrials:
print('nreversals = {} and ntrials = {}; but nreversals should be < ntrials.'.format(nreversals, ntrials))
variables_are_fine = 0
if reward_probability < 0 or reward_probability > 1:
print("reward_probability = {}; but should be element of [0, 1].".format(reward_probability))
if full_speed != 0 and full_speed != 1:
print("full_speed = {}, but should be either 0 or 1".format(full_speed))
variables_are_fine = 0
if criterion != 'IC' and criterion != 'EC' and criterion !='GD':
print("criterion = {}, but should be IC, EC or GD".format(criterion))
variables_are_fine = 0
if type(output_folder) != str:
print("output_folder does not exist")
variables_are_fine = 0
elif not os.path.isdir(output_folder):
print('output_folder does not exist')
variables_are_fine = 0
return variables_are_fine