-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPowerAnalysis2.py
491 lines (435 loc) · 33.6 KB
/
PowerAnalysis2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 14 11:04:23 2021
@author: maudb
"""
HPC = False
import numpy as np
import pandas as pd
from multiprocessing import Pool, cpu_count
from Functions2 import create_design, Incorrelation_repetition, groupdifference_repetition, check_input_parameters, Excorrelation_repetition
from scipy import stats as stat
from datetime import datetime
if HPC == False:
import seaborn as sns
import matplotlib.pyplot as plt
#This is to avoid warnings being printed to the terminal window
import warnings
warnings.filterwarnings('ignore')
def power_estimation_Incorrelation(npp = 30, ntrials = 480, nreversals = 12, cut_off = 0.7, high_performance = False,
nreps = 100, reward_probability = 0.8, mean_LR1distribution = 0.5,mean_LR2distribution = 0.5, SD_LR1distribution = 0.1,
SD_LR2distribution = 0.1, corr = 0.5, mean_inverseTempdistribution = 2.0, SD_inverseTempdistribution = 1.0):
"""
Parameters
----------
npp : integer
Number of participants in the study.
ntrials : integer
Number of trials that will be used to do the parameter recovery analysis for each participant.
nreversals : integer
The number of rule-reversals that will occur in the experiment. Should be smaller than ntrials.
cut_off : float
Critical value that will be used to evaluate whether the repetition was successful.
high_performance : bool (True or False)
Defines whether multiple cores on the computer will be used in order to estimate the power.
nreps : integer
Number of repetitions that will be used for the parameter estimation process.
reward_probability : float (element within [0, 1]), optional
The probability that reward will be congruent with the current stimulus-response mapping rule. The default is 0.8.
mean_LRdistribution: float
Mean for the normal distribution to sample learning rates from.
SD_LRdistribution: float
Standard deviation for the normal distribution to sample learning rates from.
mean_inverseTempdistribution: float
Mean for the normal distribution to sample inverse temperatures from.
SD_inverseTempdistribution: float
Standard deviation for the normal distribution to sample inverse temperatures from.
Returns
-------
allreps_output : TYPE
Pandas dataframe containing the correlation value on each repetition.
power_estimate: float [0, 1]
The power estimation: number of reps for which the parameter recovery was successful (correlation > significance_cutoff) divided by the total number of reps.
Description
-----------
Function that actually calculates the probability to obtain adequate parameter estimates.
Parameter estimates are considered to be adequate if their correlation with the true parameters is minimum the cut_off.
Power is calculated using a Monte Carlo simulation-based approach.
"""
start_design = create_design(ntrials = ntrials, nreversals = nreversals, reward_probability = reward_probability)
##
if HPC == True: n_cpu = cpu_count()
elif high_performance == True: n_cpu = cpu_count() - 2
else: n_cpu = 1
#divide process over multiple cores
pool = Pool(processes = n_cpu)
LR1_distribution = np.array([mean_LR1distribution, SD_LR1distribution])
LR2_distribution = np.array([mean_LR2distribution, SD_LR2distribution])
inverseTemp_distribution = np.array([mean_inverseTempdistribution, SD_inverseTempdistribution])
out = pool.starmap(Incorrelation_repetition, [(inverseTemp_distribution, LR1_distribution, LR2_distribution, corr, npp, ntrials,
start_design, rep, nreps, n_cpu) for rep in range(nreps)])
pool.close()
pool.join()
out_all = np.array(out)
allreps_output_lr1 = pd.DataFrame(out_all[:, 0], columns = ['correlations'])
allreps_output_lr2 = pd.DataFrame(out_all[:, 1], columns = ['correlations'])
power_estimate_lr1 = np.mean((allreps_output_lr1['correlations'] >= cut_off)*1)
power_estimate_lr2 = np.mean((allreps_output_lr2['correlations'] >= cut_off)*1)
print(str("\nProbability to obtain a correlation(true_param_lr1, param_estim) >= {}".format(cut_off)
+ " with {} trials and {} participants: {}%".format(ntrials, npp, power_estimate_lr1*100)))
print(str("\nProbability to obtain a correlation(true_param_lr2, param_estim) >= {}".format(cut_off)
+ " with {} trials and {} participants: {}%".format(ntrials, npp, power_estimate_lr2*100)))
return allreps_output_lr1, allreps_output_lr2, power_estimate_lr1, power_estimate_lr2
def power_estimation_Excorrelation(npp = 100, ntrials = 480, nreversals = 12, typeIerror = 0.05, high_performance = False,
nreps = 100, reward_probability = 0.8, mean_LR1distribution = 0.5, SD_LR1distribution = 0.1, mean_LR2distribution = 0.5,SD_LR2distribution = 0.1,
mean_inverseTempdistribution = 2.0, SD_inverseTempdistribution = 1.0, True_correlation = [0.5, 0.5, 0.5]):
"""
Parameters
----------
npp : integer
Number of participants in the study.
ntrials : integer
Number of trials that will be used to do the parameter recovery analysis for each participant.
nreversals : integer
The number of rule-reversals that will occur in the experiment. Should be smaller than ntrials.
typeIerror : float
Critical value for p-values. From this also the cut-off for the correlation statistic can be determined.
high_performance : bool (True or False)
Defines whether multiple cores on the computer will be used in order to estimate the power.
nreps : integer
Number of repetitions that will be used for the parameter estimation process.
reward_probability : float (element within [0, 1]), optional
The probability that reward will be congruent with the current stimulus-response mapping rule. The default is 0.8.
mean_LRdistribution: float
Mean for the normal distribution to sample learning rates from.
SD_LRdistribution: float
Standard deviation for the normal distribution to sample learning rates from.
mean_inverseTempdistribution: float
Mean for the normal distribution to sample inverse temperatures from.
SD_inverseTempdistribution: float
Standard deviation for the normal distribution to sample inverse temperatures from.
True_correlation: numpy array (3,1)
The hypothesized correlation between the learning rate and the external measure theta.
Returns
-------
allreps_output : TYPE
Pandas dataframe containing the correlation value on each repetition, the p-value and the p-value if estimates would be perfect.
power_estimate: float [0, 1]
The power estimation: number of reps for which the parameter recovery was successful (correlation > significance_cutoff) divided by the total number of reps.
Description
-----------
Function that actually calculates the probability to obtain significant correlations with external measures.
Parameter estimates are considered to be adequate if correctly reveal a significant correlation when a significant correlation.
Power is calculated using a Monte Carlo simulation-based approach.
"""
start_design = create_design(ntrials = ntrials, nreversals = nreversals, reward_probability = reward_probability)
if HPC == True: n_cpu = cpu_count()
elif high_performance == True: n_cpu = cpu_count() - 2
else: n_cpu = 1
#Use beta_distribution to determine the p-value for the hypothesized correlation
beta_distribution = stat.beta((npp/2)-1, (npp/2)-1, loc = -1, scale = 2)
true_pValue1 = 1-beta_distribution.cdf(True_correlation[1])
true_pValue2 = 1-beta_distribution.cdf(True_correlation[2])
tau = -beta_distribution.ppf(typeIerror/2)
#compute conventional power
noncentral_beta1 = stat.beta((npp/2)-1, (npp/2)-1, loc = -1+True_correlation[1], scale = 2)
conventional_power1 = 1-noncentral_beta1.cdf(tau)
noncentral_beta2 = stat.beta((npp/2)-1, (npp/2)-1, loc = -1+True_correlation[2], scale = 2)
conventional_power2 = 1-noncentral_beta2.cdf(tau)
print(str("\nThe correlation cut-off value is: {}".format(np.round(tau,2))))
print(str("\np-value for true correlation is :{}".format(np.round(true_pValue1,5))))
print(str("\nProbability to obtain a significant correlation under conventional power implementation: {}%".format(np.round(conventional_power1*100,2))))
print(str("\np-value for true correlation is :{}".format(np.round(true_pValue2,5))))
print(str("\nProbability to obtain a significant correlation under conventional power implementation: {}%".format(np.round(conventional_power2*100,2))))
#divide process over multiple cores
pool = Pool(processes = n_cpu)
LR1_distribution = np.array([mean_LR1distribution, SD_LR1distribution])
LR2_distribution = np.array([mean_LR2distribution, SD_LR2distribution])
inverseTemp_distribution = np.array([mean_inverseTempdistribution, SD_inverseTempdistribution])
out = pool.starmap(Excorrelation_repetition, [(inverseTemp_distribution, LR1_distribution, LR2_distribution, True_correlation, npp, ntrials,
start_design, rep, nreps, n_cpu) for rep in range(nreps)])
pool.close()
pool.join()
#allreps_output = pd.DataFrame(out, columns = ['Statistic','estimated_pValue', 'True_pValue'])
out_all = np.array(out)
allreps_output_lr1 = pd.DataFrame(out_all[:, [0,1]], columns = ['Statistic', 'estimated_pValue'])
allreps_output_lr2 = pd.DataFrame(out_all[:, [4,5]], columns = ['Statistic', 'estimated_pValue'])
#Compute power if estimates would be perfect.
#power1_true = np.mean((allreps_output['True_pValue1'] <= typeIerror/2)*1)
#print(str("\nProbability to obtain a significant correlation under conventional power implementation: {}%".format(np.round(power1_true*100,2))))
#power2_true = np.mean((allreps_output['True_pValue2'] <= typeIerror/2)*1)
#print(str("\nProbability to obtain a significant correlation under conventional power implementation: {}%".format(np.round(power2_true*100,2))))
#Compute power for correlation with estimated parameter values.
power_estimate_lr1 = np.mean((allreps_output_lr1['estimated_pValue'] <= typeIerror/2)*1)
power_estimate_lr2 = np.mean((allreps_output_lr2['estimated_pValue'] <= typeIerror/2)*1)
print(str("\nProbability to obtain a significant correlation between model parameter positive learning rate and an external measure that is {} correlated".format(True_correlation[1])
+ " with {} trials and {} participants: {}%".format(ntrials, npp, np.round(power_estimate_lr1*100,2))))
print(str("\nProbability to obtain a significant correlation between model parameter negative learning rate and an external measure that is {} correlated".format(True_correlation[2])
+ " with {} trials and {} participants: {}%".format(ntrials, npp, np.round(power_estimate_lr2*100,2))))
return allreps_output_lr1, power_estimate_lr1, allreps_output_lr2, power_estimate_lr2
def power_estimation_groupdifference(npp_per_group = 20, ntrials = 480, nreps = 100, typeIerror = 0.05,
high_performance = False, nreversals = 12, reward_probability = 0.8,
mean_LR1distributionG1 = 0.5, SD_LR1distributionG1 = 0.1,
mean_LR1distributionG2 = 0.5, SD_LR1distributionG2 = 0.1,
mean_LR2distributionG1 = 0.5, SD_LR2distributionG1 = 0.1,
mean_LR2distributionG2 = 0.5, SD_LR2distributionG2 = 0.1,
corr = 0.5, cohens_d1 = 0.5, cohens_d2 = 0.5,
mean_inverseTempdistributionG1 = 2.0, SD_inverseTempdistributionG1 = 1.0,
mean_inverseTempdistributionG2 = 2.0, SD_inverseTempdistributionG2 = 1.0):
"""
Parameters
----------
npp_per_group : integer
Number of participants per group in the study.
ntrials : integer
Number of trials that will be used to do the parameter recovery analysis for each participant.
nreps : integer
Number of repetitions that will be used for the parameter estimation process.
typeIerror : float
Critical value for p-values. From this also the cut-off for the correlation statistic can be determined.
high_performance : bool (True or False)
Defines whether multiple cores on the computer will be used in order to estimate the power.
nreversals : integer
The number of rule-reversals that will occur in the experiment. Should be smaller than ntrials.
reward_probability : float (element within [0, 1]), optional
The probability that reward will be congruent with the current stimulus-response mapping rule. The default is 0.8.
mean_LRdistributionG1: float
Mean for the normal distribution to sample learning rates for group 1.
SD_LRdistributioG1: float
Standard deviation for the normal distribution to sample learning rates for group 1.
mean_inverseTempdistributionG1: float
Mean for the normal distribution to sample inverse temperatures for group 1.
SD_inverseTempdistributionG1: float
Standard deviation for the normal distribution to sample inverse temperatures for group 1.
mean_LRdistributionG2: float
Mean for the normal distribution to sample learning rates for group 2.
SD_LRdistributioG2: float
Standard deviation for the normal distribution to sample learning rates for group 2.
mean_inverseTempdistributionG2: float
Mean for the normal distribution to sample inverse temperatures for group 2.
SD_inverseTempdistributionG2: float
Standard deviation for the normal distribution to sample inverse temperatures for group 2.
Returns
-------
allreps_output : TYPE
Pandas dataframe containing the p-value on each repetition.
power_estimate: float [0, 1]
The power estimation: number of reps for which a significant group difference was found divided by the total number of reps.
Description
-----------
Function that actually calculates the probability to obtain adequate parameter estimates.
Parameter estimates are considered to be adequate if they correctly reveal the group difference when a true group difference of size 'cohens_d' exists.
Power is calculated using a Monte Carlo simulation-based approach.
"""
start_design = create_design(ntrials = ntrials, nreversals = nreversals, reward_probability = reward_probability)
if high_performance == True: n_cpu = cpu_count() - 2
else: n_cpu = 1
if __name__ == '__main__':
#Use t_distribution to determine the p-value for the hypothesized cohen's d
true_pValue1 = 1-stat.t.cdf(cohens_d1*np.sqrt(npp_per_group), (npp_per_group-1)*2)
true_pValue2 = 1-stat.t.cdf(cohens_d2*np.sqrt(npp_per_group), (npp_per_group-1)*2)
tau = -stat.t.ppf(typeIerror/2, (npp_per_group-1)*2) # equal standard deviation
#Compute conventional power
conventional_power1 = 1-stat.nct.cdf(tau, (npp_per_group-1)*2, cohens_d1*np.sqrt(npp_per_group))
conventional_power2 = 1-stat.nct.cdf(tau, (npp_per_group-1)*2, cohens_d2*np.sqrt(npp_per_group))
print(str("\nThe t-distribution cut-off value is: {}".format(np.round(tau,2))))
print(str("\np-value for given cohen's d1 is :{}".format(np.round(true_pValue1,5))))
print(str("\np-value for given cohen's d2 is :{}".format(np.round(true_pValue2,5))))
print("\nProbability to obtain a significant group difference under conventional power implementation: {}%".format(np.round(conventional_power1*100,2)))
print("\nProbability to obtain a significant group difference under conventional power implementation: {}%".format(np.round(conventional_power2*100,2)))
#divide process over multiple cores
if mean_LR1distributionG1 > mean_LR1distributionG2:
LR1_distributions = np.array([[mean_LR1distributionG1, SD_LR1distributionG1], [mean_LR1distributionG2, SD_LR1distributionG2]])
else:
LR1_distributions = np.array([[mean_LR1distributionG2, SD_LR1distributionG2], [mean_LR1distributionG1, SD_LR1distributionG1]])
if mean_LR2distributionG1 > mean_LR2distributionG2:
LR2_distributions = np.array([[mean_LR2distributionG1, SD_LR2distributionG1], [mean_LR1distributionG2, SD_LR1distributionG2]])
else:
LR2_distributions = np.array([[mean_LR2distributionG2, SD_LR2distributionG2], [mean_LR2distributionG1, SD_LR2distributionG1]])
inverseTemp_distributions = np.array([[mean_inverseTempdistributionG1, SD_inverseTempdistributionG1],
[mean_inverseTempdistributionG2, SD_inverseTempdistributionG2]])
pool = Pool(processes = n_cpu)
out = pool.starmap(groupdifference_repetition, [(inverseTemp_distributions, LR1_distributions,LR2_distributions, corr, npp_per_group,
ntrials, start_design, rep, nreps, n_cpu, False) for rep in range(nreps)])
# before calling pool.join(), should call pool.close() to indicate that there will be no new processing
pool.close()
pool.join()
out_all = np.array(out)
allreps_output_lr1 = pd.DataFrame(out_all[:, [0,1]], columns = ['Statistic', 'estimated_pValue'])
allreps_output_lr2 = pd.DataFrame(out_all[:, [2,3]], columns = ['Statistic', 'estimated_pValue'])
# check for which % of repetitions the group difference was significant
# note that we're working with a one-sided t-test (if interested in two-sided need to divide the p-value obtained at each rep with 2)
power_estimate1 = np.mean((allreps_output_lr1['estimated_pValue'] <= typeIerror/2))
power_estimate2 = np.mean((allreps_output_lr2['estimated_pValue'] <= typeIerror/2))
print(str("\nProbability to detect a significant group difference when the estimated effect size d = {}".format(np.round(cohens_d1,3))
+ " with {} trials and {} participants per group: {}%".format(ntrials,
npp_per_group, np.round(power_estimate1*100,2))))
print(str("\nProbability to detect a significant group difference when the estimated effect size d = {}".format(np.round(cohens_d2,3))
+ " with {} trials and {} participants per group: {}%".format(ntrials,
npp_per_group, np.round(power_estimate2*100,2))))
return allreps_output_lr1, power_estimate1, allreps_output_lr2, power_estimate2
#%%
import os, sys
if __name__ == '__main__':
criterion = sys.argv[1:]
assert len(criterion) == 1
criterion = criterion[0]
power_estimate = []
InputFile_name = "InputFile2_{}s.csv".format(criterion)
InputFile_path = os.path.join(os.getcwd(), InputFile_name)
InputParameters = pd.read_csv(InputFile_path, delimiter = ',')
if InputParameters.shape[1] == 1: InputParameters = pd.read_csv(InputFile_path, delimiter = ';') # depending on how you save the csv-file, the delimiter should be "," or ";". - This if-statement ensures that the correct delimiter is used.
InputDictionary = InputParameters.to_dict()
for row in range(InputParameters.shape[0]):
#Calculate how long it takes to do a power estimation
start_time = datetime.now()
print("Power estimation started at {}.".format(start_time))
#Extract all values that are the same regardless of the criterion used
ntrials = InputDictionary['ntrials'][row]
nreversals = InputDictionary['nreversals'][row]
reward_probability = InputDictionary['reward_probability'][row]
nreps = InputDictionary['nreps'][row]
full_speed = InputDictionary['full_speed'][row]
output_folder = InputDictionary['output_folder'][row]
variables_fine = check_input_parameters(ntrials, nreversals, reward_probability, full_speed, criterion, output_folder)
if variables_fine == 0: quit()
#if not os.path.isdir(output_folder):
# print('output_folder does not exist, please adapt the csv-file')
# quit()
if criterion == "IC":
npp = InputDictionary['npp'][row]
meanLR1, sdLR1 = InputDictionary['meanLR1'][row], InputDictionary['sdLR1'][row]
meanLR2, sdLR2 = InputDictionary['meanLR2'][row], InputDictionary['sdLR2'][row]
corr = InputDictionary['corr'][row]
meanInverseT, sdInverseT = InputDictionary['meanInverseTemperature'][row], InputDictionary['sdInverseTemperature'][row]
tau = InputDictionary['tau'][row]
s_pooled1 = sdLR1
s_pooled2 = sdLR2
output1, output2, power_estimate1, power_estimate2 = power_estimation_Incorrelation(npp = npp, ntrials = ntrials, nreps = nreps,
cut_off = tau, corr = corr,
high_performance = full_speed, nreversals = nreversals,
reward_probability = reward_probability, mean_LR1distribution = meanLR1,
SD_LR1distribution = sdLR1, mean_LR2distribution = meanLR2, SD_LR2distribution = sdLR2, mean_inverseTempdistribution = meanInverseT,
SD_inverseTempdistribution = sdInverseT)
output1.to_csv(os.path.join(output_folder, 'OutputIC_LR1{}SD{}T{}R{}N{}REP{}CORR{}REW.csv'.format(s_pooled1, ntrials,
nreversals,
npp, nreps, corr, reward_probability)))
output2.to_csv(os.path.join(output_folder, 'OutputIC_LR2{}SD{}T{}R{}N{}REP{}CORR{}REW.csv'.format(s_pooled2, ntrials,
nreversals,
npp, nreps, corr, reward_probability)))
if HPC == False:
fig1, axes1 = plt.subplots(nrows = 1, ncols = 1)
sns.kdeplot(output1["correlations"], label = "Correlations", ax = axes1, cut = 0)
fig1.suptitle("Pr(Correlation >= {}) \nwith {} pp, {} trials)".format(tau, npp, ntrials), fontweight = 'bold')
axes1.set_title("Power = {}% \nbased on {} reps".format(np.round(power_estimate1*100, 2), nreps))
axes1.axvline(x = tau, lw = 2, linestyle ="dashed", color ='k', label ='tau')
plt.tight_layout()
fig2, axes2 = plt.subplots(nrows = 1, ncols = 1)
sns.kdeplot(output2["correlations"], label = "Correlations", ax = axes2, cut = 0)
fig2.suptitle("Pr(Correlation >= {}) \nwith {} pp, {} trials)".format(tau, npp, ntrials), fontweight = 'bold')
axes2.set_title("Power = {}% \nbased on {} reps".format(np.round(power_estimate2*100, 2), nreps))
axes2.axvline(x = tau, lw = 2, linestyle ="dashed", color ='k', label ='tau')
plt.tight_layout()
elif criterion == "GD":
npp_pergroup = InputDictionary['npp_group'][row]
npp = npp_pergroup*2
meanLR1_g1, sdLR1_g1 = InputDictionary['meanLR1_g1'][row], InputDictionary['sdLR1_g1'][row]
meanLR1_g2, sdLR1_g2 = InputDictionary['meanLR1_g2'][row], InputDictionary['sdLR1_g2'][row]
meanLR2_g1, sdLR2_g1 = InputDictionary['meanLR2_g1'][row], InputDictionary['sdLR2_g1'][row]
meanLR2_g2, sdLR2_g2 = InputDictionary['meanLR2_g2'][row], InputDictionary['sdLR2_g2'][row]
corr = InputDictionary['corr'][row]
meanInverseT_g1, sdInverseT_g1 = InputDictionary['meanInverseTemperature_g1'][row], InputDictionary['sdInverseTemperature_g1'][row]
meanInverseT_g2, sdInverseT_g2 = InputDictionary['meanInverseTemperature_g2'][row], InputDictionary['sdInverseTemperature_g2'][row]
typeIerror = InputDictionary['TypeIerror'][row]
# Calculate tau based on the typeIerror and the df
tau = -stat.t.ppf(typeIerror/2, npp-1)
s_pooled1 = np.sqrt((sdLR1_g1**2 + sdLR1_g2**2) / 2)
s_pooled2 = np.sqrt((sdLR2_g1**2 + sdLR2_g2**2) / 2)
cohens_d1 = np.abs(meanLR1_g1-meanLR1_g2)/s_pooled1
cohens_d2 = np.abs(meanLR2_g1-meanLR2_g2)/s_pooled2
output1, power_estimate1, output2, power_estimate2 = power_estimation_groupdifference(npp_per_group = npp_pergroup, ntrials = ntrials,
nreps = nreps, typeIerror = typeIerror, high_performance = full_speed,
nreversals = nreversals, reward_probability = reward_probability,
mean_LR1distributionG1 = meanLR1_g1, SD_LR1distributionG1 = sdLR1_g1,
mean_LR1distributionG2 = meanLR1_g2, SD_LR1distributionG2=sdLR1_g2,
mean_LR2distributionG1 = meanLR2_g1, SD_LR2distributionG1 = sdLR2_g1,
mean_LR2distributionG2 = meanLR2_g2, SD_LR2distributionG2=sdLR2_g2, corr = corr,
mean_inverseTempdistributionG1 = meanInverseT_g1, SD_inverseTempdistributionG1 = sdInverseT_g1,
mean_inverseTempdistributionG2 = meanInverseT_g2, SD_inverseTempdistributionG2 = sdInverseT_g2)
output1.to_csv(os.path.join(output_folder, 'OutputGD_LR1{}SD{}T{}R{}N{}REP{}D{}CORR{}REW.csv'.format(np.round(s_pooled1,2),
ntrials,
nreversals,
npp, nreps, np.round(cohens_d1,2),corr, reward_probability)))
output2.to_csv(os.path.join(output_folder, 'OutputGD_LR2{}SD{}T{}R{}N{}REP{}D{}CORR{}REW.csv'.format(np.round(s_pooled2,2),
ntrials,
nreversals,
npp, nreps, np.round(cohens_d2,2),corr, reward_probability)))
if HPC == False:
fig1, axes1 = plt.subplots(nrows = 1, ncols = 1)
sns.kdeplot(output1["Statistic"], label = "T-statistic", ax = axes1)
fig1.suptitle("Pr(T-statistic > {}) \nconsidering a type I error of {} \nwith {} pp, {} trials".format(np.round(tau,2), typeIerror, npp_pergroup, ntrials), fontweight = 'bold')
axes1.set_title("Power = {}% \nbased on {} reps with Cohen's d = {}".format(np.round(power_estimate1*100, 2), nreps, np.round(cohens_d1,2)))
axes1.axvline(x = tau, lw = 2, linestyle ="dashed", color ='k', label ='tau')
fig2, axes2 = plt.subplots(nrows = 1, ncols = 1)
sns.kdeplot(output2["Statistic"], label = "T-statistic", ax = axes2)
fig2.suptitle("Pr(T-statistic > {}) \nconsidering a type I error of {} \nwith {} pp, {} trials".format(np.round(tau,2), typeIerror, npp_pergroup, ntrials), fontweight = 'bold')
axes2.set_title("Power = {}% \nbased on {} reps with Cohen's d = {}".format(np.round(power_estimate2*100, 2), nreps, np.round(cohens_d2,2)))
axes2.axvline(x = tau, lw = 2, linestyle ="dashed", color ='k', label ='tau')
elif criterion == "EC":
npp = InputDictionary['npp'][row]
meanLR1, sdLR1 = InputDictionary['meanLR1'][row], InputDictionary['sdLR1'][row]
meanLR2, sdLR2 = InputDictionary['meanLR2'][row], InputDictionary['sdLR2'][row]
meanInverseT, sdInverseT = InputDictionary['meanInverseTemperature'][row], InputDictionary['sdInverseTemperature'][row]
True_correlation12 = InputDictionary['True_correlation12'][row]
True_correlation13 = InputDictionary['True_correlation13'][row]
True_correlation23 = InputDictionary['True_correlation23'][row]
True_correlation = np.array([True_correlation12, True_correlation13, True_correlation23])
typeIerror = InputDictionary['TypeIerror'][row]
s_pooled1 = sdLR1
s_pooled2 = sdLR2
beta_distribution = stat.beta((npp/2)-1, (npp/2)-1, loc = -1, scale = 2)
tau = -beta_distribution.ppf(typeIerror/2)
output1, power_estimate1, output2, power_estimate2 = power_estimation_Excorrelation(npp = npp, ntrials = ntrials, nreps = nreps,
typeIerror = typeIerror,
high_performance = full_speed, nreversals = nreversals,
reward_probability = reward_probability, mean_LR1distribution = meanLR1,
SD_LR1distribution = sdLR1, mean_LR2distribution = meanLR2, SD_LR2distribution = sdLR2, mean_inverseTempdistribution = meanInverseT,
SD_inverseTempdistribution = sdInverseT, True_correlation = True_correlation)
output1.to_csv(os.path.join(output_folder, 'OutputEC_LR1{}SD{}TC{}T{}R{}N{}REP{}CORR{}REW.csv'.format(s_pooled1, True_correlation[1], ntrials,
nreversals,
npp, nreps, True_correlation12, reward_probability)))
output2.to_csv(os.path.join(output_folder, 'OutputEC_LR2{}SD{}TC{}T{}R{}N{}REP{}CORR{}REW.csv'.format(s_pooled2, True_correlation[2], ntrials,
nreversals,
npp, nreps, True_correlation12, reward_probability)))
if HPC == False:
fig1, axes1 = plt.subplots(nrows = 1, ncols = 1)
sns.kdeplot(output1["Statistic"], label = "Correlation", ax = axes1, cut = 0)
fig1.suptitle("Pr(Correlation > {}) \nconsidering a type I error of {} \nwith {} pp, {} trials".format(np.round(tau,2), typeIerror, npp, ntrials), fontweight = 'bold')
axes1.set_title("Power = {}% \nbased on {} reps with true correlation {}".format(np.round(power_estimate1*100, 2), nreps, True_correlation[1]))
axes1.axvline(x = tau, lw = 2, linestyle ="dashed", color ='k', label ='tau')
fig2, axes2 = plt.subplots(nrows = 1, ncols = 1)
sns.kdeplot(output2["Statistic"], label = "Correlation", ax = axes2, cut = 0)
fig2.suptitle("Pr(Correlation > {}) \nconsidering a type I error of {} \nwith {} pp, {} trials".format(np.round(tau,2), typeIerror, npp, ntrials), fontweight = 'bold')
axes2.set_title("Power = {}% \nbased on {} reps with true correlation {}".format(np.round(power_estimate2*100, 2), nreps, True_correlation[2]))
axes2.axvline(x = tau, lw = 2, linestyle ="dashed", color ='k', label ='tau')
else: print("Criterion not found")
#final adaptations to the output figure & store the figure
if HPC == False:
fig1.legend(loc = 'center right')
fig1.tight_layout()
fig1.savefig(os.path.join(output_folder, 'Plot_LR1{}{}T{}R{}N{}M{}.jpg'.format(criterion,
np.round(s_pooled1, 2),
ntrials, nreversals,
npp, nreps)))
fig2.legend(loc = 'center right')
fig2.tight_layout()
fig2.savefig(os.path.join(output_folder, 'Plot_LR2{}{}T{}R{}N{}M{}.jpg'.format(criterion,
np.round(s_pooled2, 2),
ntrials, nreversals,
npp, nreps)))
# measure how long the power estimation lasted
end_time = datetime.now()
print("\nPower analysis ended at {}; run lasted {} hours.".format(end_time, end_time-start_time))
power_estimate.append([power_estimate1, power_estimate2])
temp = pd.DataFrame(power_estimate, columns = ['power1', 'power2'])
temp.to_csv(os.path.join('./Compass_results', 'power_ic.csv'))