-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathautoencoder.py
71 lines (60 loc) · 2.14 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# coding: utf-8
import os
import torch
import torchvision
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
from torchvision.utils import save_image
if not os.path.exists('./mlp_img'):
os.mkdir('./mlp_img')
def to_img(x):
x = 0.5 * (x + 1)
x = x.clamp(0, 1)
x = x.view(x.size(0), 1, 28, 28)
return x
class autoencoder(nn.Module):
def __init__(self):
super(autoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(28 * 28, 60),)
self.decoder = nn.Sequential(
nn.Linear(60, 28 * 28),)
def forward(self, x):
encoded = self.encoder(x)
x = self.decoder(encoded)
return encoded, x
def build_ae(num_epochs=100, batch_size=128, learning_rate=0.001):
img_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
dataset = MNIST('./data', transform=img_transform, download=True)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
model = autoencoder()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(
model.parameters(), lr=learning_rate, weight_decay=1e-5)
for epoch in range(num_epochs):
for data in dataloader:
img, _ = data
img = img.view(img.size(0), -1)
img = Variable(img)
# ===================forward=====================
_, output = model(img)
loss = criterion(output, img)
# ===================backward====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
# ===================log========================
print('epoch [{}/{}], loss:{:.4f}'
.format(epoch + 1, num_epochs, loss.data[0]))
if epoch % 10 == 0:
pic = to_img(output.cpu().data)
save_image(pic, './mlp_img/image_{}.png'.format(epoch))
torch.save(model.state_dict(), './sim_autoencoder.pth')
if __name__ == '__main__':
build_ae()