-
Notifications
You must be signed in to change notification settings - Fork 18
/
conjgrad.c
349 lines (297 loc) · 8.42 KB
/
conjgrad.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/**************************************************************************
**
** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved.
**
** Meschach Library
**
** This Meschach Library is provided "as is" without any express
** or implied warranty of any kind with respect to this software.
** In particular the authors shall not be liable for any direct,
** indirect, special, incidental or consequential damages arising
** in any way from use of the software.
**
** Everyone is granted permission to copy, modify and redistribute this
** Meschach Library, provided:
** 1. All copies contain this copyright notice.
** 2. All modified copies shall carry a notice stating who
** made the last modification and the date of such modification.
** 3. No charge is made for this software or works derived from it.
** This clause shall not be construed as constraining other software
** distributed on the same medium as this software, nor is a
** distribution fee considered a charge.
**
***************************************************************************/
/*
Conjugate gradient routines file
Uses sparse matrix input & sparse Cholesky factorisation in pccg().
All the following routines use routines to define a matrix
rather than use any explicit representation
(with the exeception of the pccg() pre-conditioner)
The matrix A is defined by
VEC *(*A)(void *params, VEC *x, VEC *y)
where y = A.x on exit, and y is returned. The params argument is
intended to make it easier to re-use & modify such routines.
If we have a sparse matrix data structure
SPMAT *A_mat;
then these can be used by passing sp_mv_mlt as the function, and
A_mat as the param.
*/
#include <stdio.h>
#include <math.h>
#include "matrix.h"
#include "sparse.h"
static char rcsid[] = "$Id: conjgrad.c,v 1.4 1994/01/13 05:36:45 des Exp $";
/* #define MAX_ITER 10000 */
static int max_iter = 10000;
int cg_num_iters;
/* matrix-as-routine type definition */
/* #ifdef ANSI_C */
/* typedef VEC *(*MTX_FN)(void *params, VEC *x, VEC *out); */
/* #else */
typedef VEC *(*MTX_FN)();
/* #endif */
#ifdef ANSI_C
VEC *spCHsolve(SPMAT *,VEC *,VEC *);
#else
VEC *spCHsolve();
#endif
/* cg_set_maxiter -- sets maximum number of iterations if numiter > 1
-- just returns current max_iter otherwise
-- returns old maximum */
int cg_set_maxiter(numiter)
int numiter;
{
int temp;
if ( numiter < 2 )
return max_iter;
temp = max_iter;
max_iter = numiter;
return temp;
}
/* pccg -- solves A.x = b using pre-conditioner M
(assumed factored a la spCHfctr())
-- results are stored in x (if x != NULL), which is returned */
VEC *pccg(A,A_params,M_inv,M_params,b,eps,x)
MTX_FN A, M_inv;
VEC *b, *x;
double eps;
void *A_params, *M_params;
{
VEC *r = VNULL, *p = VNULL, *q = VNULL, *z = VNULL;
int k;
Real alpha, beta, ip, old_ip, norm_b;
if ( ! A || ! b )
error(E_NULL,"pccg");
if ( x == b )
error(E_INSITU,"pccg");
x = v_resize(x,b->dim);
if ( eps <= 0.0 )
eps = MACHEPS;
r = v_get(b->dim);
p = v_get(b->dim);
q = v_get(b->dim);
z = v_get(b->dim);
norm_b = v_norm2(b);
v_zero(x);
r = v_copy(b,r);
old_ip = 0.0;
for ( k = 0; ; k++ )
{
if ( v_norm2(r) < eps*norm_b )
break;
if ( k > max_iter )
error(E_ITER,"pccg");
if ( M_inv )
(*M_inv)(M_params,r,z);
else
v_copy(r,z); /* M == identity */
ip = in_prod(z,r);
if ( k ) /* if ( k > 0 ) ... */
{
beta = ip/old_ip;
p = v_mltadd(z,p,beta,p);
}
else /* if ( k == 0 ) ... */
{
beta = 0.0;
p = v_copy(z,p);
old_ip = 0.0;
}
q = (*A)(A_params,p,q);
alpha = ip/in_prod(p,q);
x = v_mltadd(x,p,alpha,x);
r = v_mltadd(r,q,-alpha,r);
old_ip = ip;
}
cg_num_iters = k;
V_FREE(p);
V_FREE(q);
V_FREE(r);
V_FREE(z);
return x;
}
/* sp_pccg -- a simple interface to pccg() which uses sparse matrix
data structures
-- assumes that LLT contains the Cholesky factorisation of the
actual pre-conditioner */
VEC *sp_pccg(A,LLT,b,eps,x)
SPMAT *A, *LLT;
VEC *b, *x;
double eps;
{ return pccg(sp_mv_mlt,A,spCHsolve,LLT,b,eps,x); }
/*
Routines for performing the CGS (Conjugate Gradient Squared)
algorithm of P. Sonneveld:
"CGS, a fast Lanczos-type solver for nonsymmetric linear
systems", SIAM J. Sci. & Stat. Comp. v. 10, pp. 36--52
*/
/* cgs -- uses CGS to compute a solution x to A.x=b
-- the matrix A is not passed explicitly, rather a routine
A is passed where A(x,Ax,params) computes
Ax = A.x
-- the computed solution is passed */
VEC *cgs(A,A_params,b,r0,tol,x)
MTX_FN A;
VEC *x, *b;
VEC *r0; /* tilde r0 parameter -- should be random??? */
double tol; /* error tolerance used */
void *A_params;
{
VEC *p, *q, *r, *u, *v, *tmp1, *tmp2;
Real alpha, beta, norm_b, rho, old_rho, sigma;
int iter;
if ( ! A || ! x || ! b || ! r0 )
error(E_NULL,"cgs");
if ( x->dim != b->dim || r0->dim != x->dim )
error(E_SIZES,"cgs");
if ( tol <= 0.0 )
tol = MACHEPS;
p = v_get(x->dim);
q = v_get(x->dim);
r = v_get(x->dim);
u = v_get(x->dim);
v = v_get(x->dim);
tmp1 = v_get(x->dim);
tmp2 = v_get(x->dim);
norm_b = v_norm2(b);
(*A)(A_params,x,tmp1);
v_sub(b,tmp1,r);
v_zero(p); v_zero(q);
old_rho = 1.0;
iter = 0;
while ( v_norm2(r) > tol*norm_b )
{
if ( ++iter > max_iter ) break;
/* error(E_ITER,"cgs"); */
rho = in_prod(r0,r);
if ( old_rho == 0.0 )
error(E_SING,"cgs");
beta = rho/old_rho;
v_mltadd(r,q,beta,u);
v_mltadd(q,p,beta,tmp1);
v_mltadd(u,tmp1,beta,p);
(*A)(A_params,p,v);
sigma = in_prod(r0,v);
if ( sigma == 0.0 )
error(E_SING,"cgs");
alpha = rho/sigma;
v_mltadd(u,v,-alpha,q);
v_add(u,q,tmp1);
(*A)(A_params,tmp1,tmp2);
v_mltadd(r,tmp2,-alpha,r);
v_mltadd(x,tmp1,alpha,x);
old_rho = rho;
}
cg_num_iters = iter;
V_FREE(p); V_FREE(q); V_FREE(r);
V_FREE(u); V_FREE(v);
V_FREE(tmp1); V_FREE(tmp2);
return x;
}
/* sp_cgs -- simple interface for SPMAT data structures */
VEC *sp_cgs(A,b,r0,tol,x)
SPMAT *A;
VEC *b, *r0, *x;
double tol;
{ return cgs(sp_mv_mlt,A,b,r0,tol,x); }
/*
Routine for performing LSQR -- the least squares QR algorithm
of Paige and Saunders:
"LSQR: an algorithm for sparse linear equations and
sparse least squares", ACM Trans. Math. Soft., v. 8
pp. 43--71 (1982)
*/
/* lsqr -- sparse CG-like least squares routine:
-- finds min_x ||A.x-b||_2 using A defined through A & AT
-- returns x (if x != NULL) */
VEC *lsqr(A,AT,A_params,b,tol,x)
MTX_FN A, AT; /* AT is A transposed */
VEC *x, *b;
double tol; /* error tolerance used */
void *A_params;
{
VEC *u, *v, *w, *tmp;
Real alpha, beta, norm_b, phi, phi_bar,
rho, rho_bar, rho_max, theta;
Real s, c; /* for Givens' rotations */
int iter, m, n;
if ( ! b || ! x )
error(E_NULL,"lsqr");
if ( tol <= 0.0 )
tol = MACHEPS;
m = b->dim; n = x->dim;
u = v_get((unsigned int)m);
v = v_get((unsigned int)n);
w = v_get((unsigned int)n);
tmp = v_get((unsigned int)n);
norm_b = v_norm2(b);
v_zero(x);
beta = v_norm2(b);
if ( beta == 0.0 )
return x;
sv_mlt(1.0/beta,b,u);
tracecatch((*AT)(A_params,u,v),"lsqr");
alpha = v_norm2(v);
if ( alpha == 0.0 )
return x;
sv_mlt(1.0/alpha,v,v);
v_copy(v,w);
phi_bar = beta; rho_bar = alpha;
rho_max = 1.0;
iter = 0;
do {
if ( ++iter > max_iter )
error(E_ITER,"lsqr");
tmp = v_resize(tmp,m);
tracecatch((*A) (A_params,v,tmp),"lsqr");
v_mltadd(tmp,u,-alpha,u);
beta = v_norm2(u); sv_mlt(1.0/beta,u,u);
tmp = v_resize(tmp,n);
tracecatch((*AT)(A_params,u,tmp),"lsqr");
v_mltadd(tmp,v,-beta,v);
alpha = v_norm2(v); sv_mlt(1.0/alpha,v,v);
rho = sqrt(rho_bar*rho_bar+beta*beta);
if ( rho > rho_max )
rho_max = rho;
c = rho_bar/rho;
s = beta/rho;
theta = s*alpha;
rho_bar = -c*alpha;
phi = c*phi_bar;
phi_bar = s*phi_bar;
/* update x & w */
if ( rho == 0.0 )
error(E_SING,"lsqr");
v_mltadd(x,w,phi/rho,x);
v_mltadd(v,w,-theta/rho,w);
} while ( fabs(phi_bar*alpha*c) > tol*norm_b/rho_max );
cg_num_iters = iter;
V_FREE(tmp); V_FREE(u); V_FREE(v); V_FREE(w);
return x;
}
/* sp_lsqr -- simple interface for SPMAT data structures */
VEC *sp_lsqr(A,b,tol,x)
SPMAT *A;
VEC *b, *x;
double tol;
{ return lsqr(sp_mv_mlt,sp_vm_mlt,A,b,tol,x); }