-
Notifications
You must be signed in to change notification settings - Fork 18
/
hsehldr.c
248 lines (216 loc) · 6.58 KB
/
hsehldr.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/**************************************************************************
**
** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved.
**
** Meschach Library
**
** This Meschach Library is provided "as is" without any express
** or implied warranty of any kind with respect to this software.
** In particular the authors shall not be liable for any direct,
** indirect, special, incidental or consequential damages arising
** in any way from use of the software.
**
** Everyone is granted permission to copy, modify and redistribute this
** Meschach Library, provided:
** 1. All copies contain this copyright notice.
** 2. All modified copies shall carry a notice stating who
** made the last modification and the date of such modification.
** 3. No charge is made for this software or works derived from it.
** This clause shall not be construed as constraining other software
** distributed on the same medium as this software, nor is a
** distribution fee considered a charge.
**
***************************************************************************/
/*
Files for matrix computations
Householder transformation file. Contains routines for calculating
householder transformations, applying them to vectors and matrices
by both row & column.
*/
/* hsehldr.c 1.3 10/8/87 */
static char rcsid[] = "$Id: hsehldr.c,v 1.2 1994/01/13 05:36:29 des Exp $";
#include <stdio.h>
#include <math.h>
#include "matrix.h"
#include "matrix2.h"
/* hhvec -- calulates Householder vector to eliminate all entries after the
i0 entry of the vector vec. It is returned as out. May be in-situ */
#ifndef ANSI_C
VEC *hhvec(vec,i0,beta,out,newval)
VEC *vec,*out;
unsigned int i0;
Real *beta,*newval;
#else
VEC *hhvec(const VEC *vec, unsigned int i0, Real *beta,
VEC *out, Real *newval)
#endif
{
Real norm;
out = _v_copy(vec,out,i0);
norm = sqrt(_in_prod(out,out,i0));
if ( norm <= 0.0 )
{
*beta = 0.0;
return (out);
}
*beta = 1.0/(norm * (norm+fabs(out->ve[i0])));
if ( out->ve[i0] > 0.0 )
*newval = -norm;
else
*newval = norm;
out->ve[i0] -= *newval;
return (out);
}
/* hhtrvec -- apply Householder transformation to vector
-- that is, out <- (I-beta.hh(i0:n).hh(i0:n)^T).in
-- may be in-situ */
#ifndef ANSI_C
VEC *hhtrvec(hh,beta,i0,in,out)
VEC *hh,*in,*out; /* hh = Householder vector */
unsigned int i0;
double beta;
#else
VEC *hhtrvec(const VEC *hh, double beta, unsigned int i0,
const VEC *in, VEC *out)
#endif
{
Real scale;
/* unsigned int i; */
if ( hh==VNULL || in==VNULL )
error(E_NULL,"hhtrvec");
if ( in->dim != hh->dim )
error(E_SIZES,"hhtrvec");
if ( i0 > in->dim )
error(E_BOUNDS,"hhtrvec");
scale = beta*_in_prod(hh,in,i0);
out = v_copy(in,out);
__mltadd__(&(out->ve[i0]),&(hh->ve[i0]),-scale,(int)(in->dim-i0));
/************************************************************
for ( i=i0; i<in->dim; i++ )
out->ve[i] = in->ve[i] - scale*hh->ve[i];
************************************************************/
return (out);
}
/* hhtrrows -- transform a matrix by a Householder vector by rows
starting at row i0 from column j0 -- in-situ
-- that is, M(i0:m,j0:n) <- M(i0:m,j0:n)(I-beta.hh(j0:n).hh(j0:n)^T) */
#ifndef ANSI_C
MAT *hhtrrows(M,i0,j0,hh,beta)
MAT *M;
unsigned int i0, j0;
VEC *hh;
double beta;
#else
MAT *hhtrrows(MAT *M, unsigned int i0, unsigned int j0,
const VEC *hh, double beta)
#endif
{
Real ip, scale;
int i /*, j */;
if ( M==MNULL || hh==VNULL )
error(E_NULL,"hhtrrows");
if ( M->n != hh->dim )
error(E_RANGE,"hhtrrows");
if ( i0 > M->m || j0 > M->n )
error(E_BOUNDS,"hhtrrows");
if ( beta == 0.0 ) return (M);
/* for each row ... */
for ( i = i0; i < M->m; i++ )
{ /* compute inner product */
ip = __ip__(&(M->me[i][j0]),&(hh->ve[j0]),(int)(M->n-j0));
/**************************************************
ip = 0.0;
for ( j = j0; j < M->n; j++ )
ip += M->me[i][j]*hh->ve[j];
**************************************************/
scale = beta*ip;
if ( scale == 0.0 )
continue;
/* do operation */
__mltadd__(&(M->me[i][j0]),&(hh->ve[j0]),-scale,
(int)(M->n-j0));
/**************************************************
for ( j = j0; j < M->n; j++ )
M->me[i][j] -= scale*hh->ve[j];
**************************************************/
}
return (M);
}
/* hhtrcols -- transform a matrix by a Householder vector by columns
starting at row i0 from column j0
-- that is, M(i0:m,j0:n) <- (I-beta.hh(i0:m).hh(i0:m)^T)M(i0:m,j0:n)
-- in-situ
-- calls _hhtrcols() with the scratch vector w
-- Meschach internal routines should call _hhtrcols() to
avoid excessive memory allocation/de-allocation
*/
#ifndef ANSI_C
MAT *hhtrcols(M,i0,j0,hh,beta)
MAT *M;
unsigned int i0, j0;
VEC *hh;
double beta;
#else
MAT *hhtrcols(MAT *M, unsigned int i0, unsigned int j0,
const VEC *hh, double beta)
#endif
{
STATIC VEC *w = VNULL;
if ( M == MNULL || hh == VNULL || w == VNULL )
error(E_NULL,"hhtrcols");
if ( M->m != hh->dim )
error(E_SIZES,"hhtrcols");
if ( i0 > M->m || j0 > M->n )
error(E_BOUNDS,"hhtrcols");
if ( ! w || w->dim < M->n )
w = v_resize(w,M->n);
MEM_STAT_REG(w,TYPE_VEC);
M = _hhtrcols(M,i0,j0,hh,beta,w);
#ifdef THREADSAFE
V_FREE(w);
#endif
return M;
}
/* _hhtrcols -- transform a matrix by a Householder vector by columns
starting at row i0 from column j0
-- that is, M(i0:m,j0:n) <- (I-beta.hh(i0:m).hh(i0:m)^T)M(i0:m,j0:n)
-- in-situ
-- scratch vector w passed as argument
-- raises error if w == NULL
*/
#ifndef ANSI_C
MAT *_hhtrcols(M,i0,j0,hh,beta,w)
MAT *M;
unsigned int i0, j0;
VEC *hh;
double beta;
VEC *w;
#else
MAT *_hhtrcols(MAT *M, unsigned int i0, unsigned int j0,
const VEC *hh, double beta, VEC *w)
#endif
{
/* Real ip, scale; */
int i /*, k */;
/* STATIC VEC *w = VNULL; */
if ( M == MNULL || hh == VNULL || w == VNULL )
error(E_NULL,"_hhtrcols");
if ( M->m != hh->dim )
error(E_SIZES,"_hhtrcols");
if ( i0 > M->m || j0 > M->n )
error(E_BOUNDS,"_hhtrcols");
if ( beta == 0.0 ) return (M);
if ( w->dim < M->n )
w = v_resize(w,M->n);
/* MEM_STAT_REG(w,TYPE_VEC); */
v_zero(w);
for ( i = i0; i < M->m; i++ )
if ( hh->ve[i] != 0.0 )
__mltadd__(&(w->ve[j0]),&(M->me[i][j0]),hh->ve[i],
(int)(M->n-j0));
for ( i = i0; i < M->m; i++ )
if ( hh->ve[i] != 0.0 )
__mltadd__(&(M->me[i][j0]),&(w->ve[j0]),-beta*hh->ve[i],
(int)(M->n-j0));
return (M);
}