-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
177 lines (144 loc) · 6.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import time
import torch
import random
import numpy as np
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import PolynomialLR
from models.bisenet import BiSeNet
from utils.dataset import CelebAMaskHQ
from utils.loss import OhemLossWrapper
from utils.transform import TrainTransform
def parse_args():
import argparse
parser = argparse.ArgumentParser(description="Argument Parser for Training Configuration")
# Dataset
parser.add_argument('--num-classes', type=int, default=19, help='Number of classes in the dataset')
parser.add_argument('--batch-size', type=int, default=8, help='Batch size for training')
parser.add_argument('--num-workers', type=int, default=12, help='Number of workers for data loading')
parser.add_argument('--image-size', type=int, nargs=2, default=[448, 448], help='Size of input images')
parser.add_argument('--data-root', type=str, default='/mnt/d/Datasets/CelebAMask-HQ/',
help='Root directory of the dataset')
# Optimizer
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum for optimizer')
parser.add_argument('--weight-decay', type=float, default=5e-4, help='Weight decay for optimizer')
parser.add_argument('--lr-start', type=float, default=1e-2, help='Initial learning rate')
parser.add_argument('--max-iter', type=int, default=80000, help='Maximum number of iterations')
parser.add_argument('--power', type=float, default=0.9, help='Power for learning rate policy')
parser.add_argument('--lr-warmup-epochs', type=int, default=1, help='Number of warmup epochs')
parser.add_argument('--warmup-start-lr', type=float, default=1e-5, help='Warmup starting learning rate')
parser.add_argument('--score-thres', type=float, default=0.7, help='Score threshold')
# Training loop
parser.add_argument('--epochs', type=int, default=100, help='Number of epochs for training')
parser.add_argument('--backbone', type=str, default='resnet18', help='Backbone architecture')
# Train loop
parser.add_argument('--print-freq', type=int, default=50, help='Print frequency during training')
parser.add_argument('--resume', action='store_true', help='Resume training from checkpoint')
args = parser.parse_args()
return args
def random_seed(seed=42):
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
def add_weight_decay(model, weight_decay=1e-5):
"""Applying weight decay to only weights, not biases"""
decay = []
no_decay = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue
if len(param.shape) == 1 or name.endswith(".bias") or isinstance(param, nn.BatchNorm2d) or "bn" in name:
no_decay.append(param)
else:
decay.append(param)
return [{"params": no_decay, "weight_decay": 0.},
{"params": decay, "weight_decay": weight_decay}]
def train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, device, epoch, print_freq, scaler=None):
model.train()
batch_loss = []
for batch_idx, (image, target) in enumerate(data_loader):
start_time = time.time()
image = image.to(device)
target = target.to(device)
with torch.cuda.amp.autocast(enabled=scaler is not None):
output = model(image)
loss = criterion(output, target)
optimizer.zero_grad()
if scaler is not None:
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
optimizer.step()
lr_scheduler.step()
batch_loss.append(loss.item())
if (batch_idx + 1) % print_freq == 0:
lr = optimizer.param_groups[0]["lr"]
print(
f'Train: [{epoch:>3d}][{batch_idx + 1:>4d}/{len(data_loader)}] '
f'Loss: {loss.item():.4f} '
f'Time: {(time.time() - start_time):.3f}s '
f'LR: {lr:.7f} '
)
print(f"Avg batch loss: {np.mean(batch_loss):.7f}")
def main(params):
random_seed()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
images_dir = os.path.join(params.data_root, 'CelebA-HQ-img')
labels_dir = os.path.join(params.data_root, 'mask')
dataset = CelebAMaskHQ(images_dir, labels_dir, transform=TrainTransform(image_size=params.image_size))
data_loader = DataLoader(
dataset,
batch_size=params.batch_size,
shuffle=True,
num_workers=params.num_workers,
pin_memory=True,
drop_last=True
)
# model
model = BiSeNet(num_classes=params.num_classes, backbone_name=params.backbone)
model.to(device)
n_min = params.batch_size * params.image_size[0] * params.image_size[1] // 16
criterion = OhemLossWrapper(thresh=params.score_thres, min_kept=n_min)
# optimizer
parameters = add_weight_decay(model, params.weight_decay)
optimizer = torch.optim.SGD(parameters, lr=params.lr_start, momentum=params.momentum,
weight_decay=params.weight_decay)
iters_per_epoch = len(data_loader)
lr_scheduler = PolynomialLR(
optimizer, total_iters=iters_per_epoch * (params.epochs - params.lr_warmup_epochs), power=params.power
)
start_epoch = 0
if params.resume:
checkpoint = torch.load(f"./weights/{params.backbone}.ckpt", map_location="cpu", weights_only=True)
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
start_epoch = checkpoint["epoch"] + 1
for epoch in range(start_epoch, params.epochs):
train_one_epoch(
model,
criterion,
optimizer,
data_loader,
lr_scheduler,
device,
epoch,
params.print_freq,
scaler=None
)
ckpt = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
}
torch.save(ckpt, f'./weights/{params.backbone}.ckpt')
# save final model
state = model.state_dict()
torch.save(state, f'./weights/{params.backbone}.pt')
if __name__ == "__main__":
args = parse_args()
main(args)