-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdetect.py
156 lines (119 loc) · 5.33 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import cv2
import logging
import argparse
import warnings
import numpy as np
import torch
import torch.nn.functional as F
from torchvision import transforms
from models import SCRFD
from config import data_config
from utils.helpers import get_model, draw_bbox_gaze
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.INFO, format='%(message)s')
def parse_args():
parser = argparse.ArgumentParser(description="Gaze estimation inference")
parser.add_argument("--arch", type=str, default="resnet34", help="Model name, default `resnet18`")
parser.add_argument(
"--gaze-weights",
type=str,
default="output/gaze360_resnet34_1724339168/best_model.pt",
help="Path to gaze esimation model weights"
)
parser.add_argument(
"--face-weights",
type=str,
default="weights/det_10g.onnx",
help="Path to face detection model weights"
)
parser.add_argument("--view", action="store_true", help="Display the inference results")
parser.add_argument("--input", type=str, default="assets/in_video.mp4", help="Path to input video file")
parser.add_argument("--output", type=str, default="output.mp4", help="Path to save output file")
parser.add_argument("--dataset", type=str, default="gaze360", help="Dataset name to get dataset related configs")
args = parser.parse_args()
# Override default values based on selected dataset
if args.dataset in data_config:
dataset_config = data_config[args.dataset]
args.bins = dataset_config["bins"]
args.binwidth = dataset_config["binwidth"]
args.angle = dataset_config["angle"]
else:
raise ValueError(f"Unknown dataset: {args.dataset}. Available options: {list(data_config.keys())}")
return args
def pre_process(image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize(448),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = transform(image)
image_batch = image.unsqueeze(0)
return image_batch
def main(params):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
idx_tensor = torch.arange(params.bins, device=device, dtype=torch.float32)
try:
face_detector = SCRFD(model_path=params.face_weights)
logging.info("Face Detection model weights loaded.")
except Exception as e:
logging.info(f"Exception occured while loading pre-trained weights of face detection model. Exception: {e}")
try:
gaze_detector = get_model(params.arch, params.bins, inference_mode=True)
state_dict = torch.load(params.gaze_weights, map_location=device)
gaze_detector.load_state_dict(state_dict)
logging.info("Gaze Estimation model weights loaded.")
except Exception as e:
logging.info(f"Exception occured while loading pre-trained weights of gaze estimation model. Exception: {e}")
gaze_detector.to(device)
gaze_detector.eval()
video_source = params.input
if video_source.isdigit() or video_source == '0':
cap = cv2.VideoCapture(int(video_source))
else:
cap = cv2.VideoCapture(video_source)
if params.output:
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(params.output, fourcc, cap.get(cv2.CAP_PROP_FPS), (width, height))
if not cap.isOpened():
raise IOError("Cannot open webcam")
with torch.no_grad():
while True:
success, frame = cap.read()
if not success:
logging.info("Failed to obtain frame or EOF")
break
bboxes, keypoints = face_detector.detect(frame)
for bbox, keypoint in zip(bboxes, keypoints):
x_min, y_min, x_max, y_max = map(int, bbox[:4])
image = frame[y_min:y_max, x_min:x_max]
image = pre_process(image)
image = image.to(device)
pitch, yaw = gaze_detector(image)
pitch_predicted, yaw_predicted = F.softmax(pitch, dim=1), F.softmax(yaw, dim=1)
# Mapping from binned (0 to 90) to angles (-180 to 180) or (0 to 28) to angles (-42, 42)
pitch_predicted = torch.sum(pitch_predicted * idx_tensor, dim=1) * params.binwidth - params.angle
yaw_predicted = torch.sum(yaw_predicted * idx_tensor, dim=1) * params.binwidth - params.angle
# Degrees to Radians
pitch_predicted = np.radians(pitch_predicted.cpu())
yaw_predicted = np.radians(yaw_predicted.cpu())
# draw box and gaze direction
draw_bbox_gaze(frame, bbox, pitch_predicted, yaw_predicted)
if params.output:
out.write(frame)
if params.view:
cv2.imshow('Demo', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
if params.output:
out.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
args = parse_args()
if not args.view and not args.output:
raise Exception("At least one of --view or --ouput must be provided.")
main(args)