-
Notifications
You must be signed in to change notification settings - Fork 62
/
train.py
242 lines (200 loc) · 9.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from __future__ import print_function
import datetime
import os
import time
import math
import torch
import torch.utils.data
from torch import nn
import torchvision
from torchvision import transforms
import torch.nn.functional as F
import utils
def train_one_epoch(model, criterion, optimizer, data_loader, epoch, val_dataloader, classes):
epoch_start = time.time()
model.train()
running_loss = 0.0
running_corrects = 0
epoch_data_len = len(data_loader.dataset)
print('Train data num: {}'.format(epoch_data_len))
for i, (image, target) in enumerate(data_loader):
batch_start = time.time()
image, target = image.cuda(), target.cuda()
output = model(image)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
_, preds = torch.max(output, 1)
loss_ = loss.item() * image.size(0) # this batch loss
correct_ = torch.sum(preds == target.data) # this batch correct number
running_loss += loss_
running_corrects += correct_
batch_end = time.time()
if i % args.print_freq == 0 and i != 0:
print('[TRAIN] Epoch: {}/{}, Batch: {}/{}, BatchAcc: {:.4f}, BatchLoss: {:.4f}, BatchTime: {:.4f}'.format(epoch,
args.epochs, i, math.ceil(epoch_data_len/args.batch_size), correct_.double()/image.size(0),
loss_/image.size(0), batch_end-batch_start))
# if this result is the best, save it
# show the best model in validation
if i % args.eval_freq == 0 and i != 0:
val_acc = evaluate(model, criterion, val_dataloader, epoch, i)
model.train()
# the first or best will save
if len(g_val_accs) == 0 or val_acc > g_val_accs.get(max(g_val_accs, key=g_val_accs.get), 0.0):
print('*** GET BETTER RESULT READY SAVE ***')
if args.checkpoints:
torch.save({
'model': model.state_dict(),
'classes': classes,
'args': args},
os.path.join(args.checkpoints, 'model_{}_{}.pth'.format(epoch, i)))
print('*** SAVE.DONE. VAL_BEST_INDEX: {}_{}, VAL_BEST_ACC: {} ***'.format(epoch, i, val_acc))
g_val_accs[str(epoch)+'_'+str(i)] = val_acc
k = max(g_val_accs, key=g_val_accs.get)
print('val_best_index: [ {} ], val_best_acc: [ {} ]'.format(k, g_val_accs[k]))
lr=optimizer.param_groups[0]["lr"]
epoch_loss = running_loss / epoch_data_len
epoch_acc = running_corrects.double() / epoch_data_len
epoch_end = time.time()
print('[Train@] Epoch: {}/{}, EpochAcc: {:.4f}, EpochLoss: {:.4f}, EpochTime: {:.4f}, lr: {}'.format(epoch,
args.epochs, epoch_acc, epoch_loss, epoch_end-epoch_start, lr))
print()
print()
def evaluate(model, criterion, data_loader, epoch, step):
epoch_start = time.time()
model.eval()
running_loss = 0.0
running_corrects = 0
epoch_data_len = len(data_loader.dataset)
print('Val data num: {}'.format(epoch_data_len))
with torch.no_grad():
for i, (image, target) in enumerate(data_loader):
batch_start = time.time()
image, target = image.cuda(), target.cuda()
output = model(image)
loss = criterion(output, target)
_, preds = torch.max(output, 1)
loss_ = loss.item() * image.size(0) # this batch loss
correct_ = torch.sum(preds == target.data) # this batch correct number
running_loss += loss_
running_corrects += correct_
batch_end = time.time()
if i % args.print_freq == 0:
print('[VAL] Epoch: {}/{}/{}, Batch: {}/{}, BatchAcc: {:.4f}, BatchLoss: {:.4f}, BatchTime: {:.4f}'.format(step,
epoch, args.epochs, i, math.ceil(epoch_data_len/args.batch_size), correct_.double()/image.size(0),
loss_/image.size(0), batch_end-batch_start))
epoch_loss = running_loss / epoch_data_len
epoch_acc = running_corrects.double() / epoch_data_len
epoch_end = time.time()
print('[Val@] Epoch: {}/{}, EpochAcc: {:.4f}, EpochLoss: {:.4f}, EpochTime: {:.4f}'.format(epoch,
args.epochs, epoch_acc, epoch_loss, epoch_end-epoch_start))
print()
return epoch_acc
def main(args):
print("Loading data")
traindir = os.path.join(args.data_dir, 'train')
valdir = os.path.join(args.data_dir, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
print("Loading training data")
st = time.time()
# need data augumentation
dataset = torchvision.datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.Resize((256, 256)),
#transforms.RandomResizedCrop(224),
transforms.RandomCrop(224),
transforms.RandomRotation(30),
#transforms.RandomGrayscale(p=0.4),
#transforms.Grayscale(num_output_channels=3),
#transforms.RandomAffine(45, shear=0.2),
#transforms.ColorJitter(),
transforms.RandomHorizontalFlip(),
#transforms.Lambda(utils.randomColor),
#transforms.Lambda(utils.randomBlur),
#transforms.Lambda(utils.randomGaussian),
transforms.ToTensor(),
normalize,]))
print("Loading validation data")
dataset_test = torchvision.datasets.ImageFolder(
valdir,
transforms.Compose([
transforms.Resize((224, 224)),
#transforms.CenterCrop(299),
#transforms.Grayscale(num_output_channels=3),
transforms.ToTensor(),
normalize,]))
print("Creating data loaders")
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, pin_memory=True)
# show all classes
classes = data_loader.dataset.classes
print(classes)
val_dataloader = torch.utils.data.DataLoader(
dataset_test, batch_size=args.batch_size,
shuffle=False, num_workers=args.workers, pin_memory=True)
print("Creating model")
model = torchvision.models.__dict__[args.model](pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, len(classes))
#model.fc = FC(num_ftrs, len(classes))
#print(model)
# support muti gpu
model = nn.DataParallel(model, device_ids=args.device)
model.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
#lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[20, 40, 80], gamma=args.lr_gamma)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
if args.test_only:
evaluate(model, criterion, data_loader_test)
return
print("Start training")
start_time = time.time()
for epoch in range(args.epochs):
train_one_epoch(model, criterion, optimizer, data_loader, epoch, val_dataloader, classes)
lr_scheduler.step()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='PyTorch Classification Training')
parser.add_argument('--data-dir', default='/data/user/yangfg/corpus/kar-data', help='dataset')
parser.add_argument('--model', default='resnet101', help='model')
parser.add_argument('--device', default=[0], help='device')
parser.add_argument('-b', '--batch-size', default=512, type=int)
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 16)')
parser.add_argument('--lr', default=0.01, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma')
parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
parser.add_argument('--eval-freq', default=50, type=int, help='validation frequency of batchs')
parser.add_argument('--checkpoints', default='./checkpoints', help='path where to save')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument(
"--test-only",
dest="test_only",
help="Only test the model",
action="store_true",
)
args = parser.parse_args()
if not os.path.exists(args.checkpoints):
os.mkdir(args.checkpoints)
g_val_accs = {}
print(args)
main(args)