forked from THUDM/CogView
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pretrain_gpt2.py
executable file
·819 lines (674 loc) · 30.3 KB
/
pretrain_gpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pretrain GPT2"""
# Flag to use Pytorch ddp which uses overlapping communication and computation.
USE_TORCH_DDP = True
from datetime import datetime
import os
import random
import math
from filelock import FileLock
import numpy as np
import torch
import deepspeed
from contextlib import ExitStack
from arguments import get_args
from fp16 import FP16_Module
from fp16 import FP16_Optimizer
from learning_rates import AnnealingLR
from model import GPT2Model
from model import gpt2_get_params_for_weight_decay_optimization
if USE_TORCH_DDP:
from model import PyTorchDistributedDataParallel as DDP
else:
from model import DistributedDataParallel as DDP
import mpu
from apex.optimizers import FusedAdam as Adam
from utils import Timers
from utils import save_checkpoint
from utils import load_checkpoint
from utils import report_memory
from utils import print_args
from utils import print_params_min_max_norm
from utils import print_rank_0
from utils import get_sample_writer
import torch.distributed as dist
from data_utils import make_loaders, get_tokenizer, detect_new_datasets
import stat
def get_model(args):
"""Build the model."""
print_rank_0('building CogView2 model ...')
# print(args.vocab_size)
# ml = max(args.max_position_embeddings, args.max_position_embeddings_finetune)
ml = args.max_position_embeddings
model = GPT2Model(num_layers=args.num_layers,
vocab_size=args.vocab_size,
hidden_size=args.hidden_size,
num_attention_heads=args.num_attention_heads,
embedding_dropout_prob=args.hidden_dropout,
attention_dropout_prob=args.attention_dropout,
output_dropout_prob=args.hidden_dropout,
max_sequence_length=ml,
max_memory_length=args.max_memory_length,
checkpoint_activations=args.checkpoint_activations,
checkpoint_num_layers=args.checkpoint_num_layers,
parallel_output=True,
query_window=args.query_window,
key_window_times=args.key_window_times,
num_pivot=args.num_pivot
)
if mpu.get_data_parallel_rank() == 0:
print(' > number of parameters on model parallel rank {}: {}'.format(
mpu.get_model_parallel_rank(),
sum([p.nelement() for p in model.parameters()])), flush=True)
# To prevent OOM for model sizes that cannot fit in GPU memory in full precision
if hasattr(args, "deepspeed") and args.deepspeed and args.fp16:
model.half()
# GPU allocation.
model.cuda(torch.cuda.current_device())
# Fp16 conversion.
if args.fp16:
model = FP16_Module(model)
# Wrap model for distributed training.
if not args.deepspeed:
if USE_TORCH_DDP:
i = torch.cuda.current_device()
model = DDP(model, device_ids=[i], output_device=i,
process_group=mpu.get_data_parallel_group())
else:
model = DDP(model)
return model
def get_optimizer_param_groups(model):
# Build parameter groups (weight decay and non-decay).
while isinstance(model, (DDP, FP16_Module)):
model = model.module
param_groups = gpt2_get_params_for_weight_decay_optimization(model)
# Add model parallel attribute if it is not set.
for param_group in param_groups:
for param in param_group['params']:
if not hasattr(param, 'model_parallel'):
param.model_parallel = False
return param_groups
def get_optimizer(param_groups, args):
"""Set up the optimizer."""
if args.cpu_optimizer:
#Apex FusedAdam uses decoupled weight decay so use the same here
if args.cpu_torch_adam:
cpu_adam_optimizer = torch.optim.AdamW
else:
#TODO add option for decoupled weight decay in DeepCPUAdam
from deepspeed.ops.adam import DeepSpeedCPUAdam
cpu_adam_optimizer = DeepSpeedCPUAdam
optimizer = cpu_adam_optimizer(param_groups,
lr=args.lr, weight_decay=args.weight_decay)
else:
# Use FusedAdam.
optimizer = Adam(param_groups,
lr=args.lr, weight_decay=args.weight_decay)
print(f'Optimizer = {optimizer.__class__.__name__}')
if hasattr(args, "deepspeed") and args.deepspeed:
raise NotImplementedError
# fp16 wrapper is not required for DeepSpeed.
# return optimizer
# Wrap into fp16 optimizer.
if args.fp16:
optimizer = FP16_Optimizer(optimizer,
static_loss_scale=args.loss_scale,
dynamic_loss_scale=args.dynamic_loss_scale,
dynamic_loss_args={
'scale_window': args.loss_scale_window,
'min_scale': args.min_scale,
'delayed_shift': args.hysteresis})
return optimizer
def get_learning_rate_scheduler(optimizer, args):
"""Build the learning rate scheduler."""
# Add linear learning rate scheduler.
if args.lr_decay_iters is not None:
num_iters = args.lr_decay_iters
else:
num_iters = args.train_iters
num_iters = max(1, num_iters)
init_step = -1
warmup_iter = args.warmup * num_iters
lr_scheduler = AnnealingLR(optimizer,
start_lr=args.lr,
warmup_iter=warmup_iter,
num_iters=num_iters,
decay_style=args.lr_decay_style,
last_iter=init_step,
decay_ratio=args.lr_decay_ratio)
return lr_scheduler
def setup_model_and_optimizer(args):
"""Setup model and optimizer."""
model = get_model(args)
param_groups = get_optimizer_param_groups(model)
if args.train_data is not None:
if args.deepspeed:
print_rank_0("DeepSpeed is enabled.")
model, optimizer, _, _ = deepspeed.initialize(
model=model,
model_parameters=param_groups,
args=args,
mpu=mpu,
dist_init_required=False
)
else:
optimizer = get_optimizer(param_groups, args)
lr_scheduler = get_learning_rate_scheduler(optimizer, args)
else:
optimizer, lr_scheduler = None, None
return model, optimizer, lr_scheduler
def get_masks_and_position_ids(data,
loss_mask=None,
attention_mask=None, args=None):
# Extract batch size and sequence length.
batch_size, seq_length = data.size()
# Attention mask (lower triangular).
if attention_mask is None:
# single direction, [PAD]s are at the end of the seq, so doesn't matter.
attention_mask = torch.ones((1, seq_length, seq_length), device=data.device)
attention_mask = torch.tril(attention_mask)
attention_mask = attention_mask.unsqueeze(1)
# Loss mask.
if loss_mask is None:
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
# Position ids.
if args is not None and args.finetune and args.max_position_embeddings < args.max_position_embeddings_finetune:
# for each sample, find [ROI2] and split
# ([ROI1] text... [BOI1] img... [EOI1] [ROI2]<pos_id==1089> ...)
start_token = get_tokenizer()['[ROI2]']
tmp = torch.nonzero(data == start_token, as_tuple=False)
start_token_poses = [100000] * batch_size
for x, y in tmp:
start_token_poses[x] = min(start_token_poses[x], y)
assert 100000 not in start_token_poses, 'Some samples do not have [ROI2]!'
position_ids = torch.zeros(batch_size, seq_length, dtype=torch.long,
device=data.device)
for i in range(batch_size):
sep = start_token_poses[i]
torch.arange(start=0, end=sep, out=position_ids[i, :sep],
dtype=torch.long, device=data.device)
second_pos = 0 # reuse
torch.arange(start=second_pos, end=second_pos + seq_length - sep,
out=position_ids[i, sep:],
dtype=torch.long, device=data.device)
position_ids[position_ids >= args.max_position_embeddings] = args.max_position_embeddings - 1
else:
position_ids = torch.arange(seq_length, dtype=torch.long,
device=data.device)
position_ids = position_ids.unsqueeze(0).expand_as(data)
return attention_mask, loss_mask, position_ids
def get_batch(data_iterator, args, timers):
# Items and their type.
keys = ['text', 'loss_mask']
datatype = torch.int64
# Broadcast data.
timers('data loader').start()
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
timers('data loader').stop()
data_b = mpu.broadcast_data(keys, data, datatype)
# Unpack.
tokens_ = data_b['text'].long()
loss_mask = data_b['loss_mask'].float()
labels = tokens_[:, 1:].contiguous()
loss_mask = loss_mask[:, 1:].contiguous()
tokens = tokens_[:, :-1].contiguous()
attention_mask = None
# Get the masks and postition ids.
attention_mask, loss_mask, position_ids = get_masks_and_position_ids(
tokens,
loss_mask=loss_mask,
attention_mask=attention_mask,
args=args
)
# Convert
if args.fp16:
attention_mask = attention_mask.half()
return tokens, labels, loss_mask, attention_mask, position_ids
def forward_step(data_iterator, model, args, timers, mems):
"""Forward step."""
# Get the batch.
timers('batch generator').start()
tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
data_iterator, args, timers)
timers('batch generator').stop()
# split img & txt positions, [PAD] not included # TODO check enough
tokenizer = get_tokenizer()
img_txt_sep = tokenizer.img_tokenizer.num_tokens
img_indices_bool = (tokens.detach() < img_txt_sep)
txt_indices_bool = (~img_indices_bool) & (loss_mask > 0)
# Forward model.
logits, *mems = model(tokens, position_ids, attention_mask, txt_indices_bool, img_indices_bool, args.is_sparse, *mems)
losses = mpu.vocab_parallel_cross_entropy(logits.contiguous().float(),
labels)
# scaling loss mask
loss_mask[txt_indices_bool] *= args.txt_loss_scale
loss_mask = loss_mask.view(-1)
# precalc outlier point, uncomment this if needed
# if args.iteration > 10000:
# outliers = (losses.detach().view(-1) * loss_mask) > 20.
# if outliers.sum() > 0:
# print(f'Remove {outliers.sum()} outliers.')
# loss_mask[outliers] = 1e-4
losses = losses.view(-1) * loss_mask
loss = torch.sum(losses) / loss_mask.sum()
# ===================== Log partial losses ======================== #
img_indices_bool = img_indices_bool.view(-1)
txt_indices_bool = txt_indices_bool.view(-1)
img_loss = losses[img_indices_bool].detach().sum() / max(img_indices_bool.sum(), 1)
txt_loss = losses[txt_indices_bool].detach().sum() / max(txt_indices_bool.sum(), 1) / args.txt_loss_scale
# Reduce losses for logging
torch.distributed.all_reduce(img_loss.data)
torch.distributed.all_reduce(txt_loss.data)
img_loss.data = img_loss.data / args.world_size
txt_loss.data = txt_loss.data / args.world_size
# ===================== END OF BLOCK ======================= #
return loss, mems, img_loss, txt_loss
def backward_step(optimizer, model, lm_loss, args, timers):
"""Backward step."""
# Total loss.
loss = lm_loss
# Backward pass.
if args.deepspeed:
model.backward(loss)
else:
optimizer.zero_grad()
if args.fp16:
optimizer.backward(loss, update_master_grads=False)
else:
loss.backward()
reduced_losses = lm_loss.view(1)
# Reduce losses for logging
torch.distributed.all_reduce(reduced_losses.data)
reduced_losses.data = reduced_losses.data / args.world_size
if args.deepspeed:
# DeepSpeed backward propagation already addressed all reduce communication.
# Reset the timer to avoid breaking timer logs below.
timers('allreduce').reset()
else:
if not USE_TORCH_DDP:
timers('allreduce').start()
model.allreduce_params(reduce_after=False,
fp32_allreduce=args.fp32_allreduce)
timers('allreduce').stop()
lm_loss_reduced = reduced_losses
# Update master gradients.
if not args.deepspeed:
if args.fp16:
optimizer.update_master_grads()
# Clipping gradients helps prevent the exploding gradient.
if args.clip_grad > 0:
if not args.fp16:
mpu.clip_grad_norm(model.parameters(), args.clip_grad)
else:
optimizer.clip_master_grads(args.clip_grad)
return lm_loss_reduced
def see_memory_usage(message, force=False):
if not force:
return
dist.barrier()
if dist.get_rank() == 0:
print(message)
print("Memory Allocated ", torch.cuda.memory_allocated()/(1024*1024*1024), "GigaBytes")
print("Max Memory Allocated ", torch.cuda.max_memory_allocated()/(1024*1024*1024), "GigaBytes")
print("Cache Allocated ", torch.cuda.memory_cached()/(1024*1024*1024), "GigaBytes")
print("Max cache Allocated ", torch.cuda.max_memory_cached()/(1024*1024*1024), "GigaBytes")
print(" ")
def train_step(data_iterator, model, optimizer, lr_scheduler,
args, timers, mems):
"""Single training step."""
while True:
# Forward model for one step.
timers('forward').start()
lm_loss, mems, img_loss, txt_loss = forward_step(data_iterator, model, args, timers, mems)
timers('forward').stop()
if (img_loss + txt_loss).isnan().any() or (img_loss + txt_loss).isinf().any():
print('Skipping backward and optimizer step for nan or inf in forwarding!')
return (img_loss + txt_loss), 1, mems, img_loss, txt_loss
# Calculate gradients, reduce across processes, and clip.
timers('backward').start()
lm_loss_reduced = backward_step(optimizer, model, lm_loss, args, timers)
timers('backward').stop()
# Update parameters.
skipped_iter, complete = 0, False
timers('optimizer').start()
if args.deepspeed:
if model.is_gradient_accumulation_boundary():
model.step()
complete = True
if not (args.fp16 and optimizer.overflow):
lr_scheduler.step()
else:
skipped_iter = 1
else:
model.step()
else:
optimizer.step()
complete = True
# Update learning rate.
if not (args.fp16 and optimizer.overflow):
lr_scheduler.step()
else:
skipped_iter = 1
timers('optimizer').stop()
if complete:
break
return lm_loss_reduced, skipped_iter, mems, img_loss, txt_loss
def report_iteration_metrics(summary_writer, optimizer, lr, loss, elapsed_time, step, total_step, args, img_loss, txt_loss):
log_string = ' iteration {:8d}/{:8d} |'.format(step, total_step)
log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(elapsed_time)
log_string += ' learning rate {:.3E} |'.format(lr)
log_string += ' lm loss {:.6E} |'.format(loss)
log_string += ' img loss {:.6E} |'.format(img_loss)
log_string += ' unscaled txt loss {:.6E} |'.format(txt_loss)
if args.fp16:
log_string += ' loss scale {:.1f} |'.format(
optimizer.cur_scale if args.deepspeed else optimizer.loss_scale)
print_rank_0(log_string)
if summary_writer is not None:
summary_writer.add_scalar(f'Train/lr', lr, step)
summary_writer.add_scalar(f'Train/train_loss', loss, step)
summary_writer.add_scalar(f'Train/elapsed_time', elapsed_time, step)
def report_evaluate_metrics(summary_writer, prefix, loss, ppl, step):
string = ' validation loss at {} | '.format(prefix)
string += 'LM loss: {:.6E} | '.format(loss)
string += 'LM PPL: {:.6E}'.format(ppl)
length = len(string) + 1
print_rank_0('-' * 100)
print_rank_0('-' * length)
print_rank_0(string)
print_rank_0('-' * length)
if summary_writer is not None:
summary_writer.add_scalar(f'Train/valid_ppl', ppl, step)
summary_writer.add_scalar(f'Train/valid_loss', loss, step)
def train(model, optimizer, lr_scheduler,
train_data_iterator, val_data_iterator, timers, args, summary_writer=None):
"""Train the model."""
# Turn on training mode which enables dropout.
model.train()
# Tracking loss.
total_lm_loss = 0.0
total_img_loss = total_txt_loss = 0.0
# Iterations.
skipped_iters = 0
timers('interval time').start()
report_memory_flag = True
mems = []
while args.iteration < args.train_iters:
if args.iteration % 100 == 0:
new_loaders = detect_new_datasets(args)
if new_loaders is not None:
print(f'Loatding new datasets ... Now we train models on {args.train_data}.')
train_data_iterator = iter(new_loaders[0])
val_data_iterator = iter(new_loaders[1])
# TODO close the original
lm_loss, skipped_iter, mems, img_loss, txt_loss = train_step(train_data_iterator,
model,
optimizer,
lr_scheduler,
args, timers, mems)
skipped_iters += skipped_iter
args.iteration += 1
# Update losses.
total_lm_loss += lm_loss.data.detach().float()
total_img_loss += img_loss.data.detach().float()
total_txt_loss += txt_loss.data.detach().float()
# Logging.
if args.iteration % args.log_interval == 0:
learning_rate = optimizer.param_groups[0]['lr']
avg_lm_loss = total_lm_loss.item() / args.log_interval
# average img & txt loss
avg_img_loss = total_img_loss.item() / args.log_interval
avg_txt_loss = total_txt_loss.item() / args.log_interval
elapsed_time = timers('interval time').elapsed()
report_iteration_metrics(summary_writer, optimizer, learning_rate, avg_lm_loss,
elapsed_time * 1000.0 / args.log_interval, args.iteration, args.train_iters, args,
avg_img_loss, avg_txt_loss)
total_lm_loss = 0.0
total_img_loss = 0.0
total_txt_loss = 0.0
if report_memory_flag:
report_memory('after {} iterations'.format(args.iteration))
report_memory_flag = False
if USE_TORCH_DDP:
timers.log(['forward', 'backward', 'optimizer',
'batch generator', 'data loader'],
normalizer=args.log_interval)
else:
timers.log(['forward', 'backward', 'allreduce', 'optimizer',
'batch generator', 'data loader'],
normalizer=args.log_interval)
# Checkpointing
if args.save and args.save_interval and args.iteration % args.save_interval == 0:
save_checkpoint(args.iteration, model, optimizer, lr_scheduler, args)
# Evaluation
if args.eval_interval and args.iteration % args.eval_interval == 0 and args.do_valid:
prefix = 'iteration {}'.format(args.iteration)
evaluate_and_print_results(
prefix, val_data_iterator, model, args, timers, False, step=args.iteration, summary_writer=summary_writer)
if args.exit_interval and args.iteration % args.exit_interval == 0:
torch.distributed.barrier()
time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
rank = torch.distributed.get_rank()
print('rank: {} | time: {} | exiting the program at iteration {}'.
format(rank, time_str, args.iteration), flush=True)
exit()
return args.iteration, skipped_iters
def evaluate(data_iterator, model, args, timers, verbose=False):
"""Evaluation."""
# Turn on evaluation mode which disables dropout.
model.eval()
is_sparse_raw = args.is_sparse
args.is_sparse = 0
total_lm_loss = 0
mems = []
with torch.no_grad():
iteration = 0
while iteration < args.eval_iters:
iteration += 1
if verbose and iteration % args.log_interval == 0:
print_rank_0('Evaluating iter {}/{}'.format(iteration, args.eval_iters))
# Forward evaluation.
lm_loss, mems, img_loss, txt_loss = forward_step(data_iterator, model, args, timers, mems=mems)
'''when contiguous memory optimizations are enabled, the buffers
allocated by the optimizations are deallocated during backward pass
in the absence of backward pass the buffers should be reset after each
forward pass'''
if args.deepspeed and args.deepspeed_activation_checkpointing:
deepspeed.checkpointing.reset()
# Reduce across processes.
if isinstance(model, DDP):
torch.distributed.all_reduce(lm_loss.data)
lm_loss.data = lm_loss.data / args.world_size
total_lm_loss += lm_loss.data.detach().float().item()
# Move model back to the train mode.
model.train()
args.is_sparse = is_sparse_raw
total_lm_loss /= args.eval_iters
return total_lm_loss
def evaluate_and_print_results(prefix, data_iterator, model,
args, timers, verbose=False, step=None, summary_writer=None):
"""Helper function to evaluate and dump results on screen."""
lm_loss = evaluate(data_iterator, model, args, timers, verbose)
lm_ppl = math.exp(min(20, lm_loss))
report_evaluate_metrics(summary_writer, prefix, lm_loss, lm_ppl, step)
return lm_loss
'''
Optional DeepSpeed Activation Checkpointing features
Gives access to partition activations, contiguous memory optimizations
and cpu checkpointing.
Activation checkpoint requires keep track of the random states
and setting the random seed for each MP process. Megatron uses
mpu.get_cuda_rng_tracker and mpu.model_parallel_cuda_manual_seed
for keeping track of the random states and setting the random seeds.
Since they are used in places outside of activation checkpointing,
we overwrite them to maintain consistency.
This must be done before all the calls to mpu.model_parallel_cuda_manual_seed
'''
def set_deepspeed_activation_checkpointing(args):
deepspeed.checkpointing.configure(mpu, deepspeed_config=args.deepspeed_config, num_checkpoints=args.num_layers)
mpu.checkpoint = deepspeed.checkpointing.checkpoint
mpu.get_cuda_rng_tracker = deepspeed.checkpointing.get_cuda_rng_tracker
mpu.model_parallel_cuda_manual_seed = deepspeed.checkpointing.model_parallel_cuda_manual_seed
def initialize_distributed(args):
"""Initialize torch.distributed."""
# Manually set the device ids.
device = args.rank % torch.cuda.device_count()
if args.local_rank is not None:
device = args.local_rank
torch.cuda.set_device(device)
# Call the init process
init_method = 'tcp://'
master_ip = os.getenv('MASTER_ADDR', 'localhost')
master_port = os.getenv('MASTER_PORT', '6000')
init_method += master_ip + ':' + master_port
torch.distributed.init_process_group(
backend=args.distributed_backend,
world_size=args.world_size, rank=args.rank,
init_method=init_method)
# Set the model-parallel / data-parallel communicators.
mpu.initialize_model_parallel(args.model_parallel_size)
# Optional DeepSpeed Activation Checkpointing Features
#
if hasattr(args, "deepspeed") and args.deepspeed and args.deepspeed_activation_checkpointing:
set_deepspeed_activation_checkpointing(args)
def set_random_seed(seed):
"""Set random seed for reproducability."""
if seed is not None and seed > 0:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
mpu.model_parallel_cuda_manual_seed(seed)
def get_train_val_test_data(args):
"""Load the data on rank zero and boradcast number of tokens to all GPUS."""
(train_data, val_data, test_data) = (None, None, None)
# Data loader only on rank 0 of each model parallel group.
if mpu.get_model_parallel_rank() == 0:
train_data, val_data, test_data = make_loaders(args)
num_tokens = get_tokenizer().num_tokens
before = num_tokens
after = before
multiple = args.make_vocab_size_divisible_by * \
mpu.get_model_parallel_world_size()
while (after % multiple) != 0:
after += 1
print_rank_0('> padded vocab (size: {}) with {} dummy '
'tokens (new size: {})'.format(
before, after - before, after))
token_counts = torch.cuda.LongTensor(
[after, int(args.do_train), int(args.do_valid), int(args.do_test)])
else:
token_counts = torch.cuda.LongTensor([0, 0, 0, 0])
# Broadcast num tokens.
torch.distributed.broadcast(token_counts,
mpu.get_model_parallel_src_rank(),
group=mpu.get_model_parallel_group())
num_tokens = token_counts[0].item()
args.do_train = token_counts[1].item()
args.do_valid = token_counts[2].item()
args.do_test = token_counts[3].item()
return train_data, val_data, test_data, num_tokens
def main():
"""Main training program."""
# Disable CuDNN.
torch.backends.cudnn.enabled = False
# Timer.
timers = Timers()
# Arguments.
args = get_args()
if args.load:
args.experiment_name = os.path.basename(os.path.normpath(args.load))
else:
args.experiment_name = args.experiment_name + datetime.now().strftime("%m-%d-%H-%M")
if args.save:
args.save = os.path.join(args.save, args.experiment_name)
# Pytorch distributed.
initialize_distributed(args)
# Random seeds for reproducability.
set_random_seed(args.seed)
# init tokenizer
tokenizer = get_tokenizer(args)
# Data stuff.
train_data, val_data, test_data, args.vocab_size = get_train_val_test_data(args)
# Model, optimizer, and learning rate.
model, optimizer, lr_scheduler = setup_model_and_optimizer(args)
if args.load is not None:
if args.fast_load:
args.iteration = load_checkpoint(model, optimizer, lr_scheduler, args)
else:
with FileLock("/root/checkpoint_lock", timeout=-1):
args.iteration = load_checkpoint(model, optimizer, lr_scheduler, args)
else:
args.iteration = 0
torch.distributed.barrier()
summary_writer = None
if torch.distributed.get_rank() == 0:
if args.finetune:
print('Finetune CogView model')
else:
print('Pretrain CogView model')
print_args(args)
summary_writer = get_sample_writer(base=args.summary_dir, name=args.experiment_name, iteration=args.iteration)
# Resume data loader if necessary.
if args.resume_dataloader:
if train_data is not None:
train_data.batch_sampler.start_iter = args.iteration % \
len(train_data)
if val_data is not None:
start_iter_val = (args.train_iters // args.save_interval) * \
args.eval_interval
val_data.batch_sampler.start_iter = start_iter_val % \
len(val_data)
if train_data is not None:
train_data_iterator = iter(train_data)
else:
train_data_iterator = None
if val_data is not None:
val_data_iterator = iter(val_data)
else:
val_data_iterator = None
# TODO: figure out how to properly set this especially when resuming training
iteration = 0
if args.train_iters > 0:
if args.do_train:
with ExitStack() as stack:
def save_on_exit(args_, model_, optimizer_, lr_scheduler_):
save_checkpoint(args_.iteration, model_, optimizer_, lr_scheduler_, args_)
# stack.callback(save_on_exit, args, model, optimizer, lr_scheduler)
iteration, skipped = train(model, optimizer,
lr_scheduler,
train_data_iterator,
val_data_iterator,
timers, args, summary_writer=summary_writer)
if args.do_valid:
prefix = 'the end of training for val data'
val_loss = evaluate_and_print_results(prefix, val_data_iterator,
model, args, timers, False)
if args.save and iteration != 0:
save_checkpoint(iteration, model, optimizer, lr_scheduler, args)
if test_data is not None:
test_data_iterator = iter(test_data)
else:
test_data_iterator = None
if args.do_test:
# Run on test data.
prefix = 'the end of training for test data'
evaluate_and_print_results(prefix, test_data_iterator,
model, args, timers, True)
if __name__ == "__main__":
main()