forked from THUDM/CogView2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cogview2_text2image.py
executable file
·233 lines (205 loc) · 9.35 KB
/
cogview2_text2image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# -*- encoding: utf-8 -*-
'''
@File : inference_coglm.py
@Time : 2021/10/09 19:41:58
@Author : Ming Ding
@Contact : [email protected]
'''
# here put the import lib
import os
import sys
import math
import random
import torch
import argparse
from functools import partial
import numpy as np
from SwissArmyTransformer import get_args, get_tokenizer
from SwissArmyTransformer.model import CachedAutoregressiveModel
from SwissArmyTransformer.generation.sampling_strategies import BaseStrategy
from SwissArmyTransformer.generation.autoregressive_sampling import filling_sequence, evaluate_perplexity
from SwissArmyTransformer.generation.utils import timed_name, save_multiple_images, generate_continually
from coglm_strategy import CoglmStrategy
from icetk import icetk as tokenizer
tokenizer.add_special_tokens(['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])
def get_masks_and_position_ids_coglm(seq, context_length):
tokens = seq.unsqueeze(0)
attention_mask = torch.ones((1, len(seq), len(seq)), device=tokens.device)
attention_mask.tril_()
attention_mask[..., :context_length] = 1
attention_mask.unsqueeze_(1)
position_ids = torch.zeros(len(seq), device=tokens.device, dtype=torch.long)
torch.arange(0, context_length, out=position_ids[:context_length])
torch.arange(512, 512 + len(seq) - context_length,
out=position_ids[context_length:]
)
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
def main(args):
model, args = InferenceModel.from_pretrained(args, 'coglm')
text_model = CachedAutoregressiveModel(args, transformer=model.transformer)
query_template = args.query_template
invalid_slices = [slice(tokenizer.num_image_tokens, None)]
strategy = CoglmStrategy(invalid_slices,
temperature=args.temp_all_gen, top_k=args.topk_gen, top_k_cluster=args.temp_cluster_gen)
from sr_pipeline import SRGroup
if not args.only_first_stage:
srg = SRGroup(args)
def process(raw_text):
if args.with_id:
query_id, raw_text = raw_text.split('\t')
print('raw text: ', raw_text)
text = query_template.format(raw_text)
seq = tokenizer.encode(text)
if len(seq) > 110:
raise ValueError('text too long.')
txt_len = len(seq) - 1
seq = torch.tensor(seq + [-1]*400, device=args.device)
# calibrate text length
log_attention_weights = torch.zeros(len(seq), len(seq),
device=args.device, dtype=torch.half if args.fp16 else torch.float32)
log_attention_weights[:, :txt_len] = args.attn_plus
# generation
mbz = args.max_inference_batch_size
assert args.batch_size < mbz or args.batch_size % mbz == 0
get_func = partial(get_masks_and_position_ids_coglm, context_length=txt_len)
output_list, score_list = [], []
for tim in range(max(args.batch_size // mbz, 1)):
strategy.start_pos = txt_len + 1
coarse_samples = filling_sequence(model, seq.clone(),
batch_size=min(args.batch_size, mbz),
strategy=strategy,
log_attention_weights=log_attention_weights,
get_masks_and_position_ids=get_func
)[0]
# get ppl for inverse prompting
if args.inverse_prompt:
image_text_seq = torch.cat(
(
coarse_samples[:, -400:],
torch.tensor([tokenizer['<start_of_chinese>']]+tokenizer.encode(raw_text), device=args.device).expand(coarse_samples.shape[0], -1)
), dim=1)
seqlen = image_text_seq.shape[1]
attention_mask = torch.zeros(seqlen, seqlen, device=args.device, dtype=torch.long)
attention_mask[:, :400] = 1
attention_mask[400:, 400:] = 1
attention_mask[400:, 400:].tril_()
position_ids = torch.zeros(seqlen, device=args.device, dtype=torch.long)
torch.arange(513, 513+400, out=position_ids[:400])
torch.arange(0, seqlen-400, out=position_ids[400:])
loss_mask = torch.zeros(seqlen, device=args.device, dtype=torch.long)
loss_mask[401:] = 1
scores = evaluate_perplexity(
text_model, image_text_seq, attention_mask,
position_ids, loss_mask#, invalid_slices=[slice(0, 20000)], reduction='mean'
)
score_list.extend(scores.tolist())
# ---------------------
output_list.append(
coarse_samples
)
output_tokens = torch.cat(output_list, dim=0)
if args.inverse_prompt:
order_list = np.argsort(score_list)[::-1]
print(sorted(score_list))
else:
order_list = range(output_tokens.shape[0])
imgs, txts = [], []
if args.only_first_stage:
for i in order_list:
seq = output_tokens[i]
decoded_img = tokenizer.decode(image_ids=seq[-400:])
decoded_img = torch.nn.functional.interpolate(decoded_img, size=(480, 480))
imgs.append(decoded_img) # only the last image (target)
if not args.only_first_stage: # sr
iter_tokens = srg.sr_base(output_tokens[:, -400:], seq[:txt_len])
for seq in iter_tokens:
decoded_img = tokenizer.decode(image_ids=seq[-3600:])
decoded_img = torch.nn.functional.interpolate(decoded_img, size=(480, 480))
imgs.append(decoded_img) # only the last image (target)
# save
if args.with_id:
full_path = os.path.join(args.output_path, query_id)
os.makedirs(full_path, exist_ok=True)
save_multiple_images(imgs, full_path, False)
else:
prefix = raw_text.replace('/', '')[:20]
full_path = timed_name(prefix, '.jpeg', args.output_path)
imgs = torch.cat(imgs, dim=0)
print("\nSave to: ", full_path, flush=True)
from PIL import Image
from torchvision.utils import make_grid
grid = make_grid(imgs, nrow=3, padding=0)
# Add 0.5 after unnormalizing to [0, 255] to round to nearest integer
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
im = Image.fromarray(ndarr)
im.save(full_path, quality=100, subsampling=0)
os.makedirs(args.output_path, exist_ok=True)
generate_continually(process, args.input_source)
class InferenceModel(CachedAutoregressiveModel):
def final_forward(self, logits, **kwargs):
logits_parallel = logits
logits_parallel = torch.nn.functional.linear(logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float())
return logits_parallel
def get_recipe(name):
r = {
'attn_plus': 1.4,
'temp_all_gen': 1.15,
'topk_gen': 16,
'temp_cluster_gen': 1.,
'temp_all_dsr': 1.5,
'topk_dsr': 100,
'temp_cluster_dsr': 0.89,
'temp_all_itersr': 1.3,
'topk_itersr': 16,
'query_template': '{}<start_of_image>'
}
if name == 'none':
pass
elif name == 'mainbody':
r['query_template'] = '{} 高清摄影 隔绝<start_of_image>'
elif name == 'photo':
r['query_template'] = '{} 高清摄影<start_of_image>'
elif name == 'flat':
r['query_template'] = '{} 平面风格<start_of_image>'
# r['attn_plus'] = 1.8
# r['temp_cluster_gen'] = 0.75
r['temp_all_gen'] = 1.1
r['topk_dsr'] = 5
r['temp_cluster_dsr'] = 0.4
r['temp_all_itersr'] = 1
r['topk_itersr'] = 5
elif name == 'comics':
r['query_template'] = '{} 漫画 隔绝<start_of_image>'
r['topk_dsr'] = 5
r['temp_cluster_dsr'] = 0.4
r['temp_all_gen'] = 1.1
r['temp_all_itersr'] = 1
r['topk_itersr'] = 5
elif name == 'oil':
r['query_template'] = '{} 油画风格<start_of_image>'
pass
elif name == 'sketch':
r['query_template'] = '{} 素描风格<start_of_image>'
r['temp_all_gen'] = 1.1
elif name == 'isometric':
r['query_template'] = '{} 等距矢量图<start_of_image>'
r['temp_all_gen'] = 1.1
elif name == 'chinese':
r['query_template'] = '{} 水墨国画<start_of_image>'
r['temp_all_gen'] = 1.12
elif name == 'watercolor':
r['query_template'] = '{} 水彩画风格<start_of_image>'
return r
if __name__ == "__main__":
py_parser = argparse.ArgumentParser(add_help=False)
py_parser.add_argument('--img-size', type=int, default=160)
py_parser.add_argument('--only-first-stage', action='store_true')
py_parser.add_argument('--inverse-prompt', action='store_true')
py_parser.add_argument('--style', type=str, default='mainbody',
choices=['none', 'mainbody', 'photo', 'flat', 'comics', 'oil', 'sketch', 'isometric', 'chinese', 'watercolor'])
known, args_list = py_parser.parse_known_args()
args = get_args(args_list)
args = argparse.Namespace(**vars(args), **vars(known), **get_recipe(known.style))
with torch.no_grad():
main(args)