forked from Chrispresso/SnakeAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_network.py
79 lines (60 loc) · 2.65 KB
/
neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
from typing import List, Callable, NewType, Optional
ActivationFunction = NewType('ActivationFunction', Callable[[np.ndarray], np.ndarray])
sigmoid = ActivationFunction(lambda X: 1.0 / (1.0 + np.exp(-X)))
tanh = ActivationFunction(lambda X: np.tanh(X))
relu = ActivationFunction(lambda X: np.maximum(0, X))
leaky_relu = ActivationFunction(lambda X: np.where(X > 0, X, X * 0.01))
linear = ActivationFunction(lambda X: X)
class FeedForwardNetwork(object):
def __init__(self,
layer_nodes: List[int],
hidden_activation: ActivationFunction,
output_activation: ActivationFunction,
init_method: Optional[str] = 'uniform',
seed: Optional[int] = None):
self.params = {}
self.layer_nodes = layer_nodes
self.hidden_activation = hidden_activation
self.output_activation = output_activation
self.inputs = None
self.out = None
self.rand = np.random.RandomState(seed)
# Initialize weights and bias
for l in range(1, len(self.layer_nodes)):
if init_method == 'uniform':
self.params['W' + str(l)] = np.random.uniform(-1, 1, size=(self.layer_nodes[l], self.layer_nodes[l-1]))
self.params['b' + str(l)] = np.random.uniform(-1, 1, size=(self.layer_nodes[l], 1))
else:
raise Exception('Implement more options, bro')
self.params['A' + str(l)] = None
def feed_forward(self, X: np.ndarray) -> np.ndarray:
A_prev = X
L = len(self.layer_nodes) - 1 # len(self.params) // 2
# Feed hidden layers
for l in range(1, L):
W = self.params['W' + str(l)]
b = self.params['b' + str(l)]
Z = np.dot(W, A_prev) + b
A_prev = self.hidden_activation(Z)
self.params['A' + str(l)] = A_prev
# Feed output
W = self.params['W' + str(L)]
b = self.params['b' + str(L)]
Z = np.dot(W, A_prev) + b
out = self.output_activation(Z)
self.params['A' + str(L)] = out
self.out = out
return out
def softmax(self, X: np.ndarray) -> np.ndarray:
return np.exp(X) / np.sum(np.exp(X), axis=0)
def get_activation_by_name(name: str) -> ActivationFunction:
activations = [('relu', relu),
('sigmoid', sigmoid),
('linear', linear),
('leaky_relu', leaky_relu),
('tanh', tanh),
]
func = [activation[1] for activation in activations if activation[0].lower() == name.lower()]
assert len(func) == 1
return func[0]