Skip to content

Latest commit

 

History

History
359 lines (284 loc) · 13.3 KB

Spark_Streaming整合Flume.md

File metadata and controls

359 lines (284 loc) · 13.3 KB

Spark Streaming 整合 Flume

一、简介
二、推送式方法
        2.1 配置日志收集Flume
        2.2 项目依赖
        2.3 Spark Streaming接收日志数据
        2.4 项目打包
        2.5 启动服务和提交作业
        2.6 测试
        2.7 注意事项
三、拉取式方法
        3.1 配置日志收集Flume
        2.2 新增依赖
        2.3 Spark Streaming接收日志数据
        2.4 启动测试

一、简介

Apache Flume 是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中。Spark Straming 提供了以下两种方式用于 Flume 的整合。

二、推送式方法

在推送式方法 (Flume-style Push-based Approach) 中,Spark Streaming 程序需要对某台服务器的某个端口进行监听,Flume 通过 avro Sink 将数据源源不断推送到该端口。这里以监听日志文件为例,具体整合方式如下:

2.1 配置日志收集Flume

新建配置 netcat-memory-avro.properties,使用 tail 命令监听文件内容变化,然后将新的文件内容通过 avro sink 发送到 hadoop001 这台服务器的 8888 端口:

#指定agent的sources,sinks,channels
a1.sources = s1
a1.sinks = k1
a1.channels = c1

#配置sources属性
a1.sources.s1.type = exec
a1.sources.s1.command = tail -F /tmp/log.txt
a1.sources.s1.shell = /bin/bash -c
a1.sources.s1.channels = c1

#配置sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop001
a1.sinks.k1.port = 8888
a1.sinks.k1.batch-size = 1
a1.sinks.k1.channel = c1

#配置channel类型
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

2.2 项目依赖

项目采用 Maven 工程进行构建,主要依赖为 spark-streamingspark-streaming-flume

<properties>
    <scala.version>2.11</scala.version>
    <spark.version>2.4.0</spark.version>
</properties>

<dependencies>
    <!-- Spark Streaming-->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-streaming_${scala.version}</artifactId>
        <version>${spark.version}</version>
    </dependency>
    <!-- Spark Streaming 整合 Flume 依赖-->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-streaming-flume_${scala.version}</artifactId>
        <version>2.4.3</version>
    </dependency>
</dependencies>

2.3 Spark Streaming接收日志数据

调用 FlumeUtils 工具类的 createStream 方法,对 hadoop001 的 8888 端口进行监听,获取到流数据并进行打印:

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.flume.FlumeUtils

object PushBasedWordCount {
    
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf()
    val ssc = new StreamingContext(sparkConf, Seconds(5))
    // 1.获取输入流
    val flumeStream = FlumeUtils.createStream(ssc, "hadoop001", 8888)
    // 2.打印输入流的数据
    flumeStream.map(line => new String(line.event.getBody.array()).trim).print()

    ssc.start()
    ssc.awaitTermination()
  }
}

2.4 项目打包

因为 Spark 安装目录下是不含有 spark-streaming-flume 依赖包的,所以在提交到集群运行时候必须提供该依赖包,你可以在提交命令中使用 --jar 指定上传到服务器的该依赖包,或者使用 --packages org.apache.spark:spark-streaming-flume_2.12:2.4.3 指定依赖包的完整名称,这样程序在启动时会先去中央仓库进行下载。

这里我采用的是第三种方式:使用 maven-shade-plugin 插件进行 ALL IN ONE 打包,把所有依赖的 Jar 一并打入最终包中。需要注意的是 spark-streaming 包在 Spark 安装目录的 jars 目录中已经提供,所以不需要打入。插件配置如下:

<build>
    <plugins>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-compiler-plugin</artifactId>
            <configuration>
                <source>8</source>
                <target>8</target>
            </configuration>
        </plugin>
        <!--使用 shade 进行打包-->
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-shade-plugin</artifactId>
            <configuration>
                <createDependencyReducedPom>true</createDependencyReducedPom>
                <filters>
                    <filter>
                        <artifact>*:*</artifact>
                        <excludes>
                            <exclude>META-INF/*.SF</exclude>
                            <exclude>META-INF/*.sf</exclude>
                            <exclude>META-INF/*.DSA</exclude>
                            <exclude>META-INF/*.dsa</exclude>
                            <exclude>META-INF/*.RSA</exclude>
                            <exclude>META-INF/*.rsa</exclude>
                            <exclude>META-INF/*.EC</exclude>
                            <exclude>META-INF/*.ec</exclude>
                            <exclude>META-INF/MSFTSIG.SF</exclude>
                            <exclude>META-INF/MSFTSIG.RSA</exclude>
                        </excludes>
                    </filter>
                </filters>
                <artifactSet>
                    <excludes>
                        <exclude>org.apache.spark:spark-streaming_${scala.version}</exclude>
                        <exclude>org.scala-lang:scala-library</exclude>
                        <exclude>org.apache.commons:commons-lang3</exclude>
                    </excludes>
                </artifactSet>
            </configuration>
            <executions>
                <execution>
                    <phase>package</phase>
                    <goals>
                        <goal>shade</goal>
                    </goals>
                    <configuration>
                        <transformers>
                            <transformer 
                              implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
                            <transformer 
                              implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                            </transformer>
                        </transformers>
                    </configuration>
                </execution>
            </executions>
        </plugin>
        <!--打包.scala 文件需要配置此插件-->
        <plugin>
            <groupId>org.scala-tools</groupId>
            <artifactId>maven-scala-plugin</artifactId>
            <version>2.15.1</version>
            <executions>
                <execution>
                    <id>scala-compile</id>
                    <goals>
                        <goal>compile</goal>
                    </goals>
                    <configuration>
                        <includes>
                            <include>**/*.scala</include>
                        </includes>
                    </configuration>
                </execution>
                <execution>
                    <id>scala-test-compile</id>
                    <goals>
                        <goal>testCompile</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

本项目完整源码见:spark-streaming-flume

使用 mvn clean package 命令打包后会生产以下两个 Jar 包,提交 非 original 开头的 Jar 即可。

2.5 启动服务和提交作业

启动 Flume 服务:

flume-ng agent \
--conf conf \
--conf-file /usr/app/apache-flume-1.6.0-cdh5.15.2-bin/examples/netcat-memory-avro.properties \
--name a1 -Dflume.root.logger=INFO,console

提交 Spark Streaming 作业:

spark-submit \
--class com.heibaiying.flume.PushBasedWordCount \
--master local[4] \
/usr/appjar/spark-streaming-flume-1.0.jar

2.6 测试

这里使用 echo 命令模拟日志产生的场景,往日志文件中追加数据,然后查看程序的输出:

Spark Streaming 程序成功接收到数据并打印输出:

2.7 注意事项

1. 启动顺序

这里需要注意的,不论你先启动 Spark 程序还是 Flume 程序,由于两者的启动都需要一定的时间,此时先启动的程序会短暂地抛出端口拒绝连接的异常,此时不需要进行任何操作,等待两个程序都启动完成即可。

2. 版本一致

最好保证用于本地开发和编译的 Scala 版本和 Spark 的 Scala 版本一致,至少保证大版本一致,如都是 2.11


三、拉取式方法

拉取式方法 (Pull-based Approach using a Custom Sink) 是将数据推送到 SparkSink 接收器中,此时数据会保持缓冲状态,Spark Streaming 定时从接收器中拉取数据。这种方式是基于事务的,即只有在 Spark Streaming 接收和复制数据完成后,才会删除缓存的数据。与第一种方式相比,具有更强的可靠性和容错保证。整合步骤如下:

3.1 配置日志收集Flume

新建 Flume 配置文件 netcat-memory-sparkSink.properties,配置和上面基本一致,只是把 a1.sinks.k1.type 的属性修改为 org.apache.spark.streaming.flume.sink.SparkSink,即采用 Spark 接收器。

#指定agent的sources,sinks,channels
a1.sources = s1
a1.sinks = k1
a1.channels = c1

#配置sources属性
a1.sources.s1.type = exec
a1.sources.s1.command = tail -F /tmp/log.txt
a1.sources.s1.shell = /bin/bash -c
a1.sources.s1.channels = c1

#配置sink
a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
a1.sinks.k1.hostname = hadoop001
a1.sinks.k1.port = 8888
a1.sinks.k1.batch-size = 1
a1.sinks.k1.channel = c1

#配置channel类型
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

2.2 新增依赖

使用拉取式方法需要额外添加以下两个依赖:

<dependency>
    <groupId>org.scala-lang</groupId>
    <artifactId>scala-library</artifactId>
    <version>2.12.8</version>
</dependency>
<dependency>
    <groupId>org.apache.commons</groupId>
    <artifactId>commons-lang3</artifactId>
    <version>3.5</version>
</dependency>

注意:添加这两个依赖只是为了本地测试,Spark 的安装目录下已经提供了这两个依赖,所以在最终打包时需要进行排除。

2.3 Spark Streaming接收日志数据

这里和上面推送式方法的代码基本相同,只是将调用方法改为 createPollingStream

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.flume.FlumeUtils

object PullBasedWordCount {

  def main(args: Array[String]): Unit = {

    val sparkConf = new SparkConf()
    val ssc = new StreamingContext(sparkConf, Seconds(5))
    // 1.获取输入流
    val flumeStream = FlumeUtils.createPollingStream(ssc, "hadoop001", 8888)
    // 2.打印输入流中的数据
    flumeStream.map(line => new String(line.event.getBody.array()).trim).print()
    ssc.start()
    ssc.awaitTermination()
  }
}

2.4 启动测试

启动和提交作业流程与上面相同,这里给出执行脚本,过程不再赘述。

启动 Flume 进行日志收集:

flume-ng agent \
--conf conf \
--conf-file /usr/app/apache-flume-1.6.0-cdh5.15.2-bin/examples/netcat-memory-sparkSink.properties \
--name a1 -Dflume.root.logger=INFO,console

提交 Spark Streaming 作业:

spark-submit \
--class com.heibaiying.flume.PullBasedWordCount \
--master local[4] \
/usr/appjar/spark-streaming-flume-1.0.jar

参考资料