-
Notifications
You must be signed in to change notification settings - Fork 894
/
train_semseg.py
294 lines (254 loc) · 12.6 KB
/
train_semseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
"""
Author: Benny
Date: Nov 2019
"""
import argparse
import os
from data_utils.S3DISDataLoader import S3DISDataset
import torch
import datetime
import logging
from pathlib import Path
import sys
import importlib
import shutil
from tqdm import tqdm
import provider
import numpy as np
import time
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'models'))
classes = ['ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase',
'board', 'clutter']
class2label = {cls: i for i, cls in enumerate(classes)}
seg_classes = class2label
seg_label_to_cat = {}
for i, cat in enumerate(seg_classes.keys()):
seg_label_to_cat[i] = cat
def inplace_relu(m):
classname = m.__class__.__name__
if classname.find('ReLU') != -1:
m.inplace=True
def parse_args():
parser = argparse.ArgumentParser('Model')
parser.add_argument('--model', type=str, default='pointnet_sem_seg', help='model name [default: pointnet_sem_seg]')
parser.add_argument('--batch_size', type=int, default=16, help='Batch Size during training [default: 16]')
parser.add_argument('--epoch', default=32, type=int, help='Epoch to run [default: 32]')
parser.add_argument('--learning_rate', default=0.001, type=float, help='Initial learning rate [default: 0.001]')
parser.add_argument('--gpu', type=str, default='0', help='GPU to use [default: GPU 0]')
parser.add_argument('--optimizer', type=str, default='Adam', help='Adam or SGD [default: Adam]')
parser.add_argument('--log_dir', type=str, default=None, help='Log path [default: None]')
parser.add_argument('--decay_rate', type=float, default=1e-4, help='weight decay [default: 1e-4]')
parser.add_argument('--npoint', type=int, default=4096, help='Point Number [default: 4096]')
parser.add_argument('--step_size', type=int, default=10, help='Decay step for lr decay [default: every 10 epochs]')
parser.add_argument('--lr_decay', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')
parser.add_argument('--test_area', type=int, default=5, help='Which area to use for test, option: 1-6 [default: 5]')
return parser.parse_args()
def main(args):
def log_string(str):
logger.info(str)
print(str)
'''HYPER PARAMETER'''
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
'''CREATE DIR'''
timestr = str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M'))
experiment_dir = Path('./log/')
experiment_dir.mkdir(exist_ok=True)
experiment_dir = experiment_dir.joinpath('sem_seg')
experiment_dir.mkdir(exist_ok=True)
if args.log_dir is None:
experiment_dir = experiment_dir.joinpath(timestr)
else:
experiment_dir = experiment_dir.joinpath(args.log_dir)
experiment_dir.mkdir(exist_ok=True)
checkpoints_dir = experiment_dir.joinpath('checkpoints/')
checkpoints_dir.mkdir(exist_ok=True)
log_dir = experiment_dir.joinpath('logs/')
log_dir.mkdir(exist_ok=True)
'''LOG'''
args = parse_args()
logger = logging.getLogger("Model")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('%s/%s.txt' % (log_dir, args.model))
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
log_string('PARAMETER ...')
log_string(args)
root = 'data/stanford_indoor3d/'
NUM_CLASSES = 13
NUM_POINT = args.npoint
BATCH_SIZE = args.batch_size
print("start loading training data ...")
TRAIN_DATASET = S3DISDataset(split='train', data_root=root, num_point=NUM_POINT, test_area=args.test_area, block_size=1.0, sample_rate=1.0, transform=None)
print("start loading test data ...")
TEST_DATASET = S3DISDataset(split='test', data_root=root, num_point=NUM_POINT, test_area=args.test_area, block_size=1.0, sample_rate=1.0, transform=None)
trainDataLoader = torch.utils.data.DataLoader(TRAIN_DATASET, batch_size=BATCH_SIZE, shuffle=True, num_workers=10,
pin_memory=True, drop_last=True,
worker_init_fn=lambda x: np.random.seed(x + int(time.time())))
testDataLoader = torch.utils.data.DataLoader(TEST_DATASET, batch_size=BATCH_SIZE, shuffle=False, num_workers=10,
pin_memory=True, drop_last=True)
weights = torch.Tensor(TRAIN_DATASET.labelweights).cuda()
log_string("The number of training data is: %d" % len(TRAIN_DATASET))
log_string("The number of test data is: %d" % len(TEST_DATASET))
'''MODEL LOADING'''
MODEL = importlib.import_module(args.model)
shutil.copy('models/%s.py' % args.model, str(experiment_dir))
shutil.copy('models/pointnet2_utils.py', str(experiment_dir))
classifier = MODEL.get_model(NUM_CLASSES).cuda()
criterion = MODEL.get_loss().cuda()
classifier.apply(inplace_relu)
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv2d') != -1:
torch.nn.init.xavier_normal_(m.weight.data)
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find('Linear') != -1:
torch.nn.init.xavier_normal_(m.weight.data)
torch.nn.init.constant_(m.bias.data, 0.0)
try:
checkpoint = torch.load(str(experiment_dir) + '/checkpoints/best_model.pth')
start_epoch = checkpoint['epoch']
classifier.load_state_dict(checkpoint['model_state_dict'])
log_string('Use pretrain model')
except:
log_string('No existing model, starting training from scratch...')
start_epoch = 0
classifier = classifier.apply(weights_init)
if args.optimizer == 'Adam':
optimizer = torch.optim.Adam(
classifier.parameters(),
lr=args.learning_rate,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=args.decay_rate
)
else:
optimizer = torch.optim.SGD(classifier.parameters(), lr=args.learning_rate, momentum=0.9)
def bn_momentum_adjust(m, momentum):
if isinstance(m, torch.nn.BatchNorm2d) or isinstance(m, torch.nn.BatchNorm1d):
m.momentum = momentum
LEARNING_RATE_CLIP = 1e-5
MOMENTUM_ORIGINAL = 0.1
MOMENTUM_DECCAY = 0.5
MOMENTUM_DECCAY_STEP = args.step_size
global_epoch = 0
best_iou = 0
for epoch in range(start_epoch, args.epoch):
'''Train on chopped scenes'''
log_string('**** Epoch %d (%d/%s) ****' % (global_epoch + 1, epoch + 1, args.epoch))
lr = max(args.learning_rate * (args.lr_decay ** (epoch // args.step_size)), LEARNING_RATE_CLIP)
log_string('Learning rate:%f' % lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
momentum = MOMENTUM_ORIGINAL * (MOMENTUM_DECCAY ** (epoch // MOMENTUM_DECCAY_STEP))
if momentum < 0.01:
momentum = 0.01
print('BN momentum updated to: %f' % momentum)
classifier = classifier.apply(lambda x: bn_momentum_adjust(x, momentum))
num_batches = len(trainDataLoader)
total_correct = 0
total_seen = 0
loss_sum = 0
classifier = classifier.train()
for i, (points, target) in tqdm(enumerate(trainDataLoader), total=len(trainDataLoader), smoothing=0.9):
optimizer.zero_grad()
points = points.data.numpy()
points[:, :, :3] = provider.rotate_point_cloud_z(points[:, :, :3])
points = torch.Tensor(points)
points, target = points.float().cuda(), target.long().cuda()
points = points.transpose(2, 1)
seg_pred, trans_feat = classifier(points)
seg_pred = seg_pred.contiguous().view(-1, NUM_CLASSES)
batch_label = target.view(-1, 1)[:, 0].cpu().data.numpy()
target = target.view(-1, 1)[:, 0]
loss = criterion(seg_pred, target, trans_feat, weights)
loss.backward()
optimizer.step()
pred_choice = seg_pred.cpu().data.max(1)[1].numpy()
correct = np.sum(pred_choice == batch_label)
total_correct += correct
total_seen += (BATCH_SIZE * NUM_POINT)
loss_sum += loss
log_string('Training mean loss: %f' % (loss_sum / num_batches))
log_string('Training accuracy: %f' % (total_correct / float(total_seen)))
if epoch % 5 == 0:
logger.info('Save model...')
savepath = str(checkpoints_dir) + '/model.pth'
log_string('Saving at %s' % savepath)
state = {
'epoch': epoch,
'model_state_dict': classifier.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(state, savepath)
log_string('Saving model....')
'''Evaluate on chopped scenes'''
with torch.no_grad():
num_batches = len(testDataLoader)
total_correct = 0
total_seen = 0
loss_sum = 0
labelweights = np.zeros(NUM_CLASSES)
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
total_iou_deno_class = [0 for _ in range(NUM_CLASSES)]
classifier = classifier.eval()
log_string('---- EPOCH %03d EVALUATION ----' % (global_epoch + 1))
for i, (points, target) in tqdm(enumerate(testDataLoader), total=len(testDataLoader), smoothing=0.9):
points = points.data.numpy()
points = torch.Tensor(points)
points, target = points.float().cuda(), target.long().cuda()
points = points.transpose(2, 1)
seg_pred, trans_feat = classifier(points)
pred_val = seg_pred.contiguous().cpu().data.numpy()
seg_pred = seg_pred.contiguous().view(-1, NUM_CLASSES)
batch_label = target.cpu().data.numpy()
target = target.view(-1, 1)[:, 0]
loss = criterion(seg_pred, target, trans_feat, weights)
loss_sum += loss
pred_val = np.argmax(pred_val, 2)
correct = np.sum((pred_val == batch_label))
total_correct += correct
total_seen += (BATCH_SIZE * NUM_POINT)
tmp, _ = np.histogram(batch_label, range(NUM_CLASSES + 1))
labelweights += tmp
for l in range(NUM_CLASSES):
total_seen_class[l] += np.sum((batch_label == l))
total_correct_class[l] += np.sum((pred_val == l) & (batch_label == l))
total_iou_deno_class[l] += np.sum(((pred_val == l) | (batch_label == l)))
labelweights = labelweights.astype(np.float32) / np.sum(labelweights.astype(np.float32))
mIoU = np.mean(np.array(total_correct_class) / (np.array(total_iou_deno_class, dtype=np.float) + 1e-6))
log_string('eval mean loss: %f' % (loss_sum / float(num_batches)))
log_string('eval point avg class IoU: %f' % (mIoU))
log_string('eval point accuracy: %f' % (total_correct / float(total_seen)))
log_string('eval point avg class acc: %f' % (
np.mean(np.array(total_correct_class) / (np.array(total_seen_class, dtype=np.float) + 1e-6))))
iou_per_class_str = '------- IoU --------\n'
for l in range(NUM_CLASSES):
iou_per_class_str += 'class %s weight: %.3f, IoU: %.3f \n' % (
seg_label_to_cat[l] + ' ' * (14 - len(seg_label_to_cat[l])), labelweights[l - 1],
total_correct_class[l] / float(total_iou_deno_class[l]))
log_string(iou_per_class_str)
log_string('Eval mean loss: %f' % (loss_sum / num_batches))
log_string('Eval accuracy: %f' % (total_correct / float(total_seen)))
if mIoU >= best_iou:
best_iou = mIoU
logger.info('Save model...')
savepath = str(checkpoints_dir) + '/best_model.pth'
log_string('Saving at %s' % savepath)
state = {
'epoch': epoch,
'class_avg_iou': mIoU,
'model_state_dict': classifier.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(state, savepath)
log_string('Saving model....')
log_string('Best mIoU: %f' % best_iou)
global_epoch += 1
if __name__ == '__main__':
args = parse_args()
main(args)