-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhistograms.py
412 lines (351 loc) · 16.1 KB
/
histograms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
#!/usr/bin/env python
u"""
histograms.py
by Yara Mohajerani (Last Update 11/2018)
Forked from CNNvsSobelHistogram.py by Michael Wood
find path of least resistance through an image and quantify errors
Update History
11/2018 - Forked from CNNvsSobelHistogram.py
Add option for manual comparison
make sure all the fronts are in the same order
"""
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import FormatStrFormatter
from PIL import Image
import getopt
import copy
from shapely.geometry import LineString, shape
#############################################################################################
# All of the functions are run here
#-- main function to get user input and make training data
def main():
#-- Read the system arguments listed after the program
long_options = ['subdir=','method=','step=','indir=','interval=','buffer=','manual']
optlist,arglist = getopt.getopt(sys.argv[1:],'=D:M:S:I:V:B:m:',long_options)
subdir= 'all_data2_test'
method = ''
step = 50
n_interval = 1000
buffer_size=500
indir = ''
set_manual = False
for opt, arg in optlist:
if opt in ('-D','--subdir'):
subdir = arg
elif opt in ('-M','--method'):
method = arg
elif opt in ('-S','--step'):
step = np.int(arg)
elif opt in ('-V','--interval'):
n_interval = np.int(arg)
elif opt in ('-B','--buffer'):
buffer_size = np.int(arg)
elif opt in ('-I','--indir'):
indir = os.path.expanduser(arg)
elif opt in ('-m','--manual'):
set_manual = True
#-- directory setup
#- current directory
current_dir = os.path.dirname(os.path.realpath(__file__))
headDirectory = os.path.join(current_dir,'..','FrontLearning_data')
glaciersFolder=os.path.join(headDirectory,'Glaciers')
results_dir = os.path.join(headDirectory,'Results', subdir)
#-- if user input not given, set label folder
#-- else if input directory is given, then set the method based on that
if indir == '':
indir = os.path.join(results_dir,method,method)
else:
method = os.path.basename(indir)
if method=='':
sys.exit("Please do not put '/' at the end of indir.")
print('input directory ONLY for NN output:%s'%indir)
print('METHOD:%s'%method)
#-- make histohtam filder if it doesn't exist
histFolder = os.path.join(results_dir,'Histograms')
if (not os.path.isdir(histFolder)):
os.mkdir(histFolder)
outputFolder= os.path.join(histFolder,method+'_'+str(step)+'_%isegs'%n_interval+'_%ibuffer'%buffer_size)
#-- make output folders
if (not os.path.isdir(outputFolder)):
os.mkdir(outputFolder)
if set_manual:
datasets = ['NN','Sobel','Manual']
else:
datasets = ['NN','Sobel']
print(datasets)
pixelFolder = {}
frontFolder = {}
pixelFolder['NN'] = os.path.join(results_dir,method,method+' Pixel CSVs '+str(step))
pixelFolder['Sobel'] = os.path.join(results_dir,'Sobel/Sobel Pixel CSVs '+str(step))
if 'Manual' in datasets:
pixelFolder['Manual'] = os.path.join(results_dir,'output_handrawn/output_handrawn Pixel CSVs '+str(step))
frontFolder['NN'] = os.path.join(results_dir,method,method+' Geo CSVs '+str(step))
frontFolder['Sobel'] = os.path.join(results_dir,'Sobel/Sobel Geo CSVs '+str(step))
if 'Manual' in datasets:
frontFolder['Manual'] = os.path.join(results_dir,'output_handrawn/output_handrawn Geo CSVs '+str(step))
def seriesToNPoints(series,N):
#find the total length of the series
totalDistance=0
for s in range(len(series[:,0])-1):
totalDistance+=((series[s,0]-series[s+1,0])**2+(series[s,1]-series[s+1,1])**2)**0.5
intervalDistance=totalDistance/(N-1)
#make the list of points
newSeries=series[0,:]
currentS = 0
currentPoint1=series[currentS,:]
currentPoint2=series[currentS+1,:]
for p in range(N-2):
distanceAccrued = 0
while distanceAccrued<intervalDistance:
currentLineDistance=((currentPoint1[0]-currentPoint2[0])**2+(currentPoint1[1]-currentPoint2[1])**2)**0.5
if currentLineDistance<intervalDistance-distanceAccrued:
distanceAccrued+=currentLineDistance
currentS+=1
currentPoint1 = series[currentS, :]
currentPoint2 = series[currentS + 1, :]
else:
distance=intervalDistance-distanceAccrued
newX=currentPoint1[0]+(distance/currentLineDistance)*(currentPoint2[0]-currentPoint1[0])
newY = currentPoint1[1] + (distance / currentLineDistance) * (currentPoint2[1] - currentPoint1[1])
distanceAccrued=intervalDistance+1
newSeries=np.vstack([newSeries,np.array([newX,newY])])
currentPoint1=np.array([newX,newY])
newSeries = np.vstack([newSeries, series[-1,:]])
return(newSeries)
def frontComparisonErrors(front1,front2):
errors=[]
for ff in range(len(front1)):
dist=((front1[ff,0]-front2[ff,0])**2+(front1[ff,1]-front2[ff,1])**2)**0.5
errors.append(dist)
return(errors)
def rmsError(error):
return(np.sqrt(np.mean(np.square(error))))
def generateLabelList(labelFolder):
labelList=[]
for fil in os.listdir(labelFolder):
# if fil[-6:] == 'B8.png' or fil[-6:] == 'B2.png':
# labelList.append(fil[:-4])
if fil.endswith('_nothreshold.png'):
labelList.append(fil.replace('_nothreshold.png',''))
return(labelList)
# get glacier names
def getGlacierList(labelList):
f=open(os.path.join(glaciersFolder,'Scene_Glacier_Dictionary.csv'),'r')
lines=f.read()
f.close()
lines=lines.split('\n')
glacierList = []
for sceneID in labelList:
for line in lines:
line=line.split(',')
if line[0]==sceneID:
glacierList.append(line[1])
return(glacierList)
#code to get the list of fronts and their images
def getFrontList(glacierList,labelList):
frontsList = []
for ind,label in enumerate(labelList):
glacier = glacierList[ind]
f=open(os.path.join(glaciersFolder, glacier, '%s Image Data.csv'%glacier),'r')
lines=f.read()
f.close()
lines=lines.split('\n')
for line in lines:
line=line.split(',')
if line[1][:-4] == label:
frontsList.append(line[0])
return(frontsList)
def fjordBoundaryIndices(glacier):
boundary1file=os.path.join(glaciersFolder,glacier,'Fjord Boundaries',glacier+' Boundary 1 V2.csv')
boundary1=np.genfromtxt(boundary1file,delimiter=',')
boundary2file = os.path.join(glaciersFolder,glacier,'Fjord Boundaries',glacier + ' Boundary 2 V2.csv')
boundary2 = np.genfromtxt(boundary2file, delimiter=',')
boundary1=seriesToNPoints(boundary1,1000)
boundary2 = seriesToNPoints(boundary2, 1000)
return(boundary1,boundary2)
labelList=generateLabelList(indir)
glacierList=getGlacierList(labelList)
frontList=getFrontList(glacierList,labelList)
allerrors = {}
allerrors['NN']=[]
allerrors['Sobel']=[]
allerrors['Manual']=[]
N=1
N=len(labelList)
for ll in range(N):
glacier = glacierList[ll]
label=labelList[ll]
trueFrontFile=frontList[ll]
print(label)
############################################################################
# This section to get the front images
trueImageFolder=os.path.join(headDirectory,'Glaciers',glacier,'Small Images')
trueImage = Image.open(os.path.join(trueImageFolder,label+'_Subset.png')).transpose(Image.FLIP_LEFT_RIGHT).convert("L")
frontImageFolder = {}
frontImageFolder['NN'] = indir
frontImageFolder['Sobel'] = os.path.join(results_dir,'Sobel/Sobel')
if 'Manual' in datasets:
frontImageFolder['Manual'] = os.path.join(os.path.dirname(indir),'output_handrawn')
frontImage = {}
pixels = {}
for d,tl in zip(datasets,['_nothreshold','','_nothreshold']):
frontImage[d] = Image.open(os.path.join(frontImageFolder[d],label \
+ '%s.png'%tl)).transpose(Image.FLIP_LEFT_RIGHT).convert("L")
############################################################################
# This section to get the front pixels
# get the front
pixelsFile = glacier + ' ' + label + ' Pixels.csv'
pixels[d] = np.genfromtxt(os.path.join(pixelFolder[d],pixelsFile), delimiter=',')
pixels[d] = seriesToNPoints(pixels[d], n_interval)
############################################################################
# Get the fjord boundaries for the current glacier
bounds = {}
bounds[1], bounds[2] = fjordBoundaryIndices(glacier)
buff = {}
for i in [1,2]:
# Form buffer around boundary
lineStringSet=bounds[i]
line=LineString(lineStringSet)
buff[i] = line.buffer(buffer_size)
############################################################################
# This section to get the front data
#get the true front
trueFrontFolder = os.path.join(glaciersFolder,glacier,'Front Locations','3413')
trueFront=np.genfromtxt(trueFrontFolder+'/'+trueFrontFile,delimiter=',')
#-- make sure all fronts go in the same direction
#-- if the x axis is not in increasng order, reverse
if trueFront[0,0] > trueFront[-1,0] and glacier!='Helheim':
print('flipped true front.')
trueFront = trueFront[::-1,:]
trueFront=seriesToNPoints(trueFront,n_interval)
#-- get rid of poitns too close to the edges
l1 = LineString(trueFront)
int1 = l1.difference(buff[1])
int2 = int1.difference(buff[2])
try:
trueFront = np.array(shape(int2).coords)
except:
lengths = [len(np.array(shape(int2)[i].coords)) for i in range(len(shape(int2)))]
max_ind = np.argmax(lengths)
trueFront = np.array(shape(int2)[max_ind].coords)
#-- testing
print(lengths)
print(lengths[max_ind])
#-- rebreak into n_interval segments
trueFront=seriesToNPoints(trueFront,n_interval)
front = {}
errors = {}
for d in datasets:
#get the front
frontFile=glacier+' '+label+' Profile.csv'
temp_front=np.genfromtxt(os.path.join(frontFolder[d],frontFile),delimiter=',')
#-- make sure all fronts go in the same direction
#-- if the x axis is not in increasng order, reverse
#if temp_front[0,0] > temp_front[-1,0]:
# print('flipped %s'%d)
# temp_front = temp_front[::-1,:]
front[d]=seriesToNPoints(temp_front,n_interval)
#-- get rid of points to close to the edges
#-- get rid of poitns too close to the edges
l1 = LineString(front[d])
int1 = l1.difference(buff[1])
int2 = int1.difference(buff[2])
try:
front[d] = np.array(shape(int2).coords)
except:
lengths = [len(np.array(shape(int2)[i].coords)) for i in range(len(shape(int2)))]
max_ind = np.argmax(lengths)
front[d] = np.array(shape(int2)[max_ind].coords)
#-- testing
print(lengths)
print(lengths[max_ind])
#-- rebreak into n_interval segments
front[d]=seriesToNPoints(front[d],n_interval)
errors[d]=frontComparisonErrors(trueFront,front[d])
for error in errors[d]:
allerrors[d].append(error)
#-- plot fronts for debugging purposes -- double checking.
# plt.plot(trueFront[:,0],trueFront[:,1],label='True')
# plt.plot(front['NN'][:,0],front['NN'][:,1,],label='NN')
# plt.legend()
# plt.show()
frontXmin = np.min(np.concatenate(([np.min(trueFront[:, 0])], [np.min(front[d][:,0]) for d in datasets])))
frontXmax = np.max(np.concatenate(([np.max(trueFront[:, 0])], [np.max(front[d][:, 0]) for d in datasets])))
frontYmin = np.min(np.concatenate(([np.min(trueFront[:, 1])], [np.min(front[d][:, 1]) for d in datasets])))
frontYmax = np.max(np.concatenate(([np.max(trueFront[:, 1])], [np.max(front[d][:, 1]) for d in datasets])))
fig=plt.figure(figsize=(10,8))
n_panels = len(front)+1
plt.subplot(2,n_panels,1)
plt.imshow(trueImage, cmap='gray')
plt.gca().set_xlim([0, 200])
plt.gca().set_ylim([300,0])
plt.gca().axes.get_xaxis().set_ticks([])
plt.gca().axes.get_yaxis().set_ticks([])
plt.title('Original Image',fontsize=12)
p = 2
for d in datasets:
plt.subplot(2, n_panels, p)
plt.imshow(frontImage[d], cmap='gray')
plt.plot(pixels[d][:, 0], pixels[d][:, 1], 'y-',linewidth=3)
plt.gca().set_xlim([0, 200])
plt.gca().set_ylim([300, 0])
plt.gca().axes.get_xaxis().set_ticks([])
plt.gca().axes.get_yaxis().set_ticks([])
plt.title('%s Solution'%d,fontsize=12)
p += 1
plt.subplot(2,n_panels,p)
plt.title('Geocoded Solutions',fontsize=12)
plt.ylabel('Northing (km)',fontsize=12)
plt.xlabel('Easting (km)',fontsize=12)
plt.plot(trueFront[:,0]/1000,trueFront[:,1]/1000,'k-',label='True')
for d,c in zip(datasets,['b-','g-','r-']):
plt.plot(front[d][:,0]/1000,front[d][:,1]/1000,c,label=d)
plt.gca().set_xlim([frontXmin/1000,frontXmax/1000])
plt.gca().set_ylim([frontYmin/1000, frontYmax/1000])
plt.gca().set_xticks([frontXmin/1000,frontXmax/1000])
plt.gca().set_yticks([frontYmin / 1000, frontYmax / 1000])
plt.legend(loc=0)
p += 1
p_temp = copy.copy(p)
x = {}
y = {}
for d,c in zip(datasets,['b','g','r']):
plt.subplot(2,n_panels,p)
plt.title('%s Errors Histogram'%d,fontsize=12)
bins=range(0,5000,100)
y[d], x[d], _ =plt.hist(errors[d],alpha=0.5,color=c,bins=bins,label='NN')
#plt.xlabel('RMS Error = '+'{0:.2f}'.format(rmsError(errors[d]))+' m',fontsize=12)
plt.xlabel('Mean Diff. = '+'{0:.2f}'.format(np.mean(np.abs(errors[d])))+' m',fontsize=12)
p += 1
#-- set histogram bounds
for d in datasets:
plt.subplot(2,n_panels,p_temp)
plt.gca().set_ylim([0,np.max([y[d] for d in datasets])])
plt.gca().set_xlim([0, np.max([x[d] for d in datasets])])
p_temp += 1
plt.savefig(os.path.join(outputFolder, label + '.png'),bbox_inches='tight')
plt.close(fig)
fig=plt.figure(figsize=(11,4))
x = {}
y = {}
for i,d,c,lbl in zip(range(len(datasets)),datasets,['b','g','r'],['e','f','g']):
plt.subplot(1,len(datasets),i+1)
plt.title(r"$\bf{%s)}$"%lbl + " %s Error Histogram"%d,fontsize=12)
bins=range(0,5000,100)
y[d], x[d], _ =plt.hist(allerrors[d],alpha=0.5,color=c,bins=bins,label=d)
#plt.xlabel('RMS Error = '+'{0:.2f}'.format(rmsError(allerrors[d]))+' m',fontsize=12)
plt.xlabel('Mean Difference = '+'{0:.2f}'.format(np.mean(np.abs(allerrors[d])))+' m',fontsize=12)
if i==0:
plt.ylabel('Count (100 m bins)',fontsize=12)
for i in range(len(datasets)):
plt.subplot(1,len(datasets),i+1)
plt.gca().set_ylim([0,np.max([y[d] for d in datasets])])
plt.gca().set_xlim([0,np.max([x[d] for d in datasets])])
plt.savefig(os.path.join(results_dir,\
'Figure_4_'+'_'.join(method.split())+'_'+str(step)+'_%isegs'%n_interval+'_%ibuffer'%buffer_size+'.pdf'),bbox_inches='tight')
plt.close()
if __name__ == '__main__':
main()