-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpostProcessing.py
433 lines (366 loc) · 17.5 KB
/
postProcessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
#!/usr/bin/env python
u"""
postProcessing.py
by Michael Wood (Last Updated by Yara Mohajerani 10/2018)
find path of least resistance through an image
Update History
11/2018 - Yara: Don't separate train or test inputs based on glacier. Input subdir
and get glacier name from spreadsheet
10/2018 - Yara: Change input folder to be consistent with
other scripts
09/2018 - Yara: Clean up and add user input
09/2018 - Michael: written
"""
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from skimage.graph import route_through_array
import shapefile
import os
import sys
import getopt
from osgeo import ogr
from osgeo import osr
import urllib
from pyproj import Proj,transform
#############################################################################################
#############################################################################################
#This function to make a list of the labels with threshold label
def generateLabelList_threshold(indir):
labelList=[]
for fil in os.listdir(indir):
if fil.endswith('_nothreshold.png'):
labelList.append(fil.replace('_nothreshold.png',''))
return(labelList)
#This function to make a list of the labels without threshold label
def generateLabelList_sobel(indir):
labelList=[]
for fil in os.listdir(indir):
if fil[-6:] == 'B8.png' or fil[-6:] == 'B2.png':
labelList.append(fil[:-4])
return(labelList)
#############################################################################################
# These functions are to create a list of indices used to find the line label
# get glacier names
def getGlacierList(labelList,glaciersFolder):
f=open(os.path.join(glaciersFolder,'Scene_Glacier_Dictionary.csv'),'r')
lines=f.read()
f.close()
lines=lines.split('\n')
glacierList = []
for sceneID in labelList:
for line in lines:
line=line.split(',')
if line[0]==sceneID:
glacierList.append(line[1])
return(glacierList)
def obtainSceneCornersProjection(sceneID,glaciersFolder,glacier):
f=open(os.path.join(glaciersFolder, glacier, '%s Image Data.csv'%glacier),'r')
lines=f.read()
f.close()
lines=lines.split('\n')
for line in lines:
line=line.split(',')
if line[1][:-4]==sceneID:
corners=[]
projection=int(line[2])
for i in range(4,12):
corners.append(float(line[i]))
return(corners,projection)
def geoCoordsToImagePixels(coords,corners, projection, imageSize):
coords=reprojectPolygon(coords,3413,projection)
# fx(x,y) = ax + by + cxy + d
A=np.array([[corners[0],corners[1],corners[0]*corners[1],1], #lower left corner,
[corners[2],corners[3],corners[2]*corners[3],1], #lower right corner
[corners[4], corners[5], corners[4] * corners[5],1], #upper right corner
[corners[6], corners[7], corners[6] * corners[7],1]]) #upper left corner
#option 1
bx = np.array([[0],[imageSize[0]],[imageSize[0]],[0]])
by = np.array([[imageSize[1]],[imageSize[1]],[0], [0] ])
Cx=np.dot(np.linalg.inv(A),bx)
Cy = np.dot(np.linalg.inv(A), by)
imagePixels=[]
for coord in coords:
pixelX=Cx[0]*coord[0] + Cx[1]*coord[1] + Cx[2]*coord[0]*coord[1] + Cx[3]
pixelY=Cy[0]*coord[0] + Cy[1]*coord[1] + Cy[2]*coord[0]*coord[1] + Cy[3]
if pixelX>0 and pixelX<imageSize[0]-1 and pixelY>0 and pixelY<imageSize[1]-1:
imagePixels.append([round(pixelX),round(pixelY)])
return(np.array(imagePixels))
def reprojectPolygon(polygon,inputCRS,outputCRS):
inProj = Proj(init='epsg:'+str(inputCRS))
outProj = Proj(init='epsg:'+str(outputCRS))
x1,y1 = -11705274.6374,4826473.6922
x2,y2 = transform(inProj,outProj,x1,y1)
outputPolygon=[]
for point in polygon:
x = point[0]
y = point[1]
x2,y2 = transform(inProj,outProj,x,y)
outputPolygon.append([x2,y2])
return np.array(outputPolygon)
def seriesToNPoints(series,N):
#find the total length of the series
totalDistance=0
for s in range(len(series[:,0])-1):
totalDistance+=((series[s,0]-series[s+1,0])**2+(series[s,1]-series[s+1,1])**2)**0.5
intervalDistance=totalDistance/(N-1)
#make the list of points
newSeries=series[0,:]
currentS = 0
currentPoint1=series[currentS,:]
currentPoint2=series[currentS+1,:]
for p in range(N-2):
distanceAccrued = 0
while distanceAccrued<intervalDistance:
currentLineDistance=((currentPoint1[0]-currentPoint2[0])**2+(currentPoint1[1]-currentPoint2[1])**2)**0.5
if currentLineDistance<intervalDistance-distanceAccrued:
distanceAccrued+=currentLineDistance
currentS+=1
currentPoint1 = series[currentS, :]
currentPoint2 = series[currentS + 1, :]
else:
distance=intervalDistance-distanceAccrued
newX=currentPoint1[0]+(distance/currentLineDistance)*(currentPoint2[0]-currentPoint1[0])
newY = currentPoint1[1] + (distance / currentLineDistance) * (currentPoint2[1] - currentPoint1[1])
distanceAccrued=intervalDistance+1
newSeries=np.vstack([newSeries,np.array([newX,newY])])
currentPoint1=np.array([newX,newY])
newSeries = np.vstack([newSeries, series[-1,:]])
return(newSeries)
def fjordBoundaryIndices(glaciersFolder,glacier,corners,projection,imageSize):
boundary1file=os.path.join(glaciersFolder,glacier,'Fjord Boundaries',glacier+' Boundary 1 V2.csv')
boundary1=np.genfromtxt(boundary1file,delimiter=',')
boundary2file = os.path.join(glaciersFolder,glacier,'Fjord Boundaries',glacier + ' Boundary 2 V2.csv')
boundary2 = np.genfromtxt(boundary2file, delimiter=',')
boundary1=seriesToNPoints(boundary1,1000)
boundary2 = seriesToNPoints(boundary2, 1000)
boundary1pixels = geoCoordsToImagePixels(boundary1,corners,projection,imageSize)
boundary2pixels = geoCoordsToImagePixels(boundary2, corners, projection,imageSize)
return(boundary1pixels,boundary2pixels)
def plotImageWithBoundaries(image,boundary1pixels,boundary2pixels):
imArr = np.asarray(image)
plt.contourf(imArr)
plt.plot(boundary1pixels[:,0],boundary1pixels[:,1],'w-')
plt.plot(boundary2pixels[:, 0], boundary2pixels[:, 1], 'w-')
plt.gca().set_aspect('equal')
plt.show()
def testBoundaryIndices():
boundarySide1indices=[]
boundarySide2indices=[]
for j in range(30,180,10):
boundarySide1indices.append([40,j])
boundarySide2indices.append([160,j])
return(np.array(boundarySide1indices),np.array(boundarySide2indices))
#############################################################################################
# These functions are to find the most probable front based on the NN solution
def plotImageWithSolutionAndEndpoints(image,solution,startPoint,endPoint,boundary1pixels,boundary2pixels):
imArr = np.asarray(image)
C=plt.contourf(imArr)
plt.colorbar(C)
plt.plot(startPoint[0],startPoint[1],'w.',markersize=20)
plt.plot(endPoint[0], endPoint[1], 'w.', markersize=20)
plt.plot(boundary1pixels[:, 0], boundary1pixels[:, 1], 'w-')
plt.plot(boundary2pixels[:, 0], boundary2pixels[:, 1], 'w-')
plt.plot(solution[:,0],solution[:,1],'g-')
plt.gca().set_aspect('equal')
plt.show()
def leastCostSolution(imgArr,boundarySide1indices,boundarySide2indices,step):
weight=1e22
indices=[]
for b1 in range(len(boundarySide1indices)):
if b1 % step==0:
startPoint = np.array(boundarySide1indices[b1],dtype=int)
#if b1 % step == 0:
# print(' '+str(b1+1)+' of '+str(len(boundarySide1indices))+' indices tested')
for b2 in range(len(boundarySide2indices)):
if b2 % step ==0:
endPoint = np.array(boundarySide2indices[b2],dtype=int)
testIndices, testWeight = route_through_array(imgArr, (startPoint[1], startPoint[0]),\
(endPoint[1], endPoint[0]), geometric=True,\
fully_connected=True)
tmpIndices = np.array(testIndices)
testIndices=np.hstack([np.reshape(tmpIndices[:,1],(np.shape(tmpIndices)[0],1)),np.reshape(tmpIndices[:,0],(np.shape(tmpIndices)[0],1))])
if testWeight<weight:
weight=testWeight
indices=testIndices
return(indices)
def plotImageWithSolution(image,solution):
imArr = np.asarray(image)
plt.contourf(imArr)
plt.plot(solution[:,0],solution[:,1],'w-')
plt.gca().set_aspect('equal')
plt.show()
def outputSolutionIndicesPng(imgArr,solutionIndices,outputFolder,label):
solutionArr=255*np.ones_like(imgArr)
for i in range(len(solutionIndices)):
if solutionIndices[i,1]>1 and solutionIndices[i,1]<np.shape(solutionArr)[0]-1 and solutionIndices[i,1]>1 and solutionIndices[i,0]<np.shape(solutionArr)[1]-1:
solutionArr[solutionIndices[i, 1], solutionIndices[i, 0]] = 0
solutionArr[solutionIndices[i, 1]+1, solutionIndices[i, 0]+1] = 0
solutionArr[solutionIndices[i, 1], solutionIndices[i, 0]+1] = 0
solutionArr[solutionIndices[i, 1]-1, solutionIndices[i, 0]+1] = 0
solutionArr[solutionIndices[i, 1]+1, solutionIndices[i, 0]] = 0
solutionArr[solutionIndices[i, 1]-1, solutionIndices[i, 0]] = 0
solutionArr[solutionIndices[i, 1]+1, solutionIndices[i, 0]-1] = 0
solutionArr[solutionIndices[i, 1], solutionIndices[i, 0]-1] = 0
solutionArr[solutionIndices[i, 1]-1, solutionIndices[i, 0]-1] = 0
outIm=Image.fromarray(solutionArr)
outIm=outIm.transpose(Image.FLIP_LEFT_RIGHT)
# plt.imshow(solutionArr)
# plt.show()
outIm.save(outputFolder+'/'+label+'_Solution.png')
#############################################################################################
# These functions are to construct a shapefile from the geometric coordinates
def imagePixelsToGeoCoords(pixels, corners, projection, imageSize):
# fx(x,y) = ax + by + cxy + d
A = np.array([[0, 0, 0 * 0, 1], # lower left corner,
[imageSize[0], 0, imageSize[0] * 0, 1], # lower right corner
[imageSize[0], imageSize[1], imageSize[0] * imageSize[1], 1], # upper right corner
[0, imageSize[1], 0 * imageSize[1], 1]]) # upper left corner
# option 1
bx = np.array([[corners[0]], [corners[2]], [corners[4]], [corners[6]]])
by = np.array([[corners[1]], [corners[3]], [corners[5]], [corners[7]]])
Cx = np.dot(np.linalg.inv(A), bx)
Cy = np.dot(np.linalg.inv(A), by)
geoCoords = []
for pixel in pixels:
geoX = Cx[0] * pixel[0] + Cx[1] * pixel[1] + Cx[2] * pixel[0] * pixel[1] + Cx[3]
geoY = Cy[0] * pixel[0] + Cy[1] * pixel[1] + Cy[2] * pixel[0] * pixel[1] + Cy[3]
geoCoords.append([round(geoX), round(geoY)])
geoCoords = reprojectPolygon(geoCoords, projection,3413)
return (np.array(geoCoords))
def getPrj(epsg):
# access projection information
wkt = urllib.urlopen("http://spatialreference.org/ref/epsg/{0}/prettywkt/".format(str(epsg)))
remove_spaces = wkt.read().replace(" ", "")
output = remove_spaces.replace("\n", "")
return output
def solutionToShapefile(glacierList,labels,frontIndices,shapefileOutputFolder, cornersList, projectionList, imageSizeList):
#output the shapefile
outputFile = 'Front Profiles'
w = shapefile.Writer()
w.field('Glacier', 'C')
w.field('Scene', 'C')
for ll in range(len(labels)):
glacier=glacierList[ll]
frontSolution=imagePixelsToGeoCoords(frontIndices[ll],cornersList[ll],projectionList[ll],imageSizeList[ll])
w.record(glacier,labels[ll])
output = []
for c in range(len(frontSolution)):
output.append([frontSolution[c, 0], frontSolution[c, 1]])
w.line(parts=[output])
w.save(shapefileOutputFolder + '/' + outputFile)
# create the .prj file
prj = open(os.path.join(shapefileOutputFolder , outputFile + ".prj"), "w")
epsg = getPrj(3413)
prj.write(epsg)
prj.close()
def solutionToCSV(glacierList, labels, frontIndices, csvOutputFolder, cornersList, projectionList,imageSizeList):
for ll in range(len(labels)):
glacier=glacierList[ll]
frontSolution = imagePixelsToGeoCoords(frontIndices[ll], cornersList[ll], projectionList[ll], imageSizeList[ll])
outputFile = glacier + ' ' + labels[ll] + ' Profile.csv'
output = []
for c in range(len(frontSolution)):
output.append([frontSolution[c, 0], frontSolution[c, 1]])
output=np.array(output)
np.savetxt(csvOutputFolder+'/'+outputFile,output,delimiter=',')
def pixelSolutionToCSV(glacierList, labels, frontIndices, pixelOutputFolder, cornersList, projectionList, imageSizeList):
for ll in range(len(labels)):
glacier=glacierList[ll]
frontSolution = frontIndices[ll]
outputFile = glacier + ' ' + labels[ll] + ' Pixels.csv'
output = []
for c in range(len(frontSolution)):
output.append([frontSolution[c, 0], frontSolution[c, 1]])
output = np.array(output)
np.savetxt(pixelOutputFolder + '/' + outputFile, output, delimiter=',')
#############################################################################################
# All of the functions are run here
#-- main function to get user input and make training data
def main():
#-- Read the system arguments listed after the program
long_options = ['subdir=','method=','step=','indir=']
optlist,arglist = getopt.getopt(sys.argv[1:],'=D:M:S:I:',long_options)
subdir= 'all_data2_test'
method = ''
step = 50
indir = ''
for opt, arg in optlist:
if opt in ('-D','--subdir'):
subdir = arg
elif opt in ('-M','--method'):
method = arg
elif opt in ('-S','--step'):
step = np.int(arg)
elif opt in ('-I','--indir'):
indir = os.path.expanduser(arg)
#-- directory setup
#- current directory
current_dir = os.path.dirname(os.path.realpath(__file__))
headDirectory = os.path.join(current_dir,'..','FrontLearning_data')
glaciersFolder=os.path.join(headDirectory,'Glaciers')
#-- if user input not given, set label folder
if indir == '':
#-- first create ourdifr directory
outdir = os.path.join(headDirectory,'Results',subdir,method)
#-- make input directory
indir= os.path.join(outdir,method)
#-- if input directory is given, then set the method based on that
else:
method = os.path.basename(indir)
if method=='':
sys.exit("Please do not put '/' at the end of indir.")
#-- then make output directory based on method
outdir = os.path.join(headDirectory,'Results',subdir,method)
if (not os.path.isdir(outdir)):
os.mkdir(outdir)
print('input directory:%s'%indir)
print('method:%s'%method)
postProcessedOutputFolder = os.path.join(outdir,method+' Post-Processed '+str(step))
csvOutputFolder = os.path.join(outdir,method+' Geo CSVs '+str(step))
pixelOutputFolder = os.path.join(outdir,method+' Pixel CSVs '+str(step))
shapefileOutputFolder = os.path.join(outdir,method+' Shapefile '+str(step))
#-- make output folders
if (not os.path.isdir(postProcessedOutputFolder)):
os.mkdir(postProcessedOutputFolder)
if (not os.path.isdir(csvOutputFolder)):
os.mkdir(csvOutputFolder)
if (not os.path.isdir(pixelOutputFolder)):
os.mkdir(pixelOutputFolder)
if (not os.path.isdir(shapefileOutputFolder)):
os.mkdir(shapefileOutputFolder)
if method == 'Sobel':
labelList=generateLabelList_sobel(indir)
else:
labelList=generateLabelList_threshold(indir)
glacierList = getGlacierList(labelList,glaciersFolder)
print(len(labelList))
print(len(glacierList))
frontIndicesList=[]
cornersList=[]
projectionList=[]
imageSizeList=[]
for ind,label in enumerate(labelList):
glacier = glacierList[ind]
print('%i of %i'%(ind+1,len(labelList)))
print('Working on label '+label)
print('Glacier: '+glacier)
if ('sobel' in method) or ('Sobel' in method):
im = Image.open(indir + '/' + label + '.png').transpose(Image.FLIP_LEFT_RIGHT)
else:
im=Image.open(indir+'/'+label+'_nothreshold.png').transpose(Image.FLIP_LEFT_RIGHT)
corners,projection=obtainSceneCornersProjection(label,glaciersFolder,glacier)
cornersList.append(corners)
projectionList.append(projection)
imageSizeList.append(im.size)
boundary1pixels,boundary2pixels=fjordBoundaryIndices(glaciersFolder,glacier,corners,projection,im.size)
# plotImageWithBoundaries(im,boundary1pixels,boundary2pixels)
solutionIndices = leastCostSolution(im,boundary1pixels,boundary2pixels,step)
frontIndicesList.append(solutionIndices)
outputSolutionIndicesPng(im,solutionIndices,postProcessedOutputFolder,label)
# plotImageWithSolution(im,solutionIndices)
solutionToCSV(glacierList, labelList, frontIndicesList, csvOutputFolder, cornersList, projectionList,imageSizeList)
pixelSolutionToCSV(glacierList, labelList, frontIndicesList, pixelOutputFolder, cornersList, projectionList, imageSizeList)
solutionToShapefile(glacierList, labelList, frontIndicesList, shapefileOutputFolder, cornersList, projectionList, imageSizeList)
if __name__ == '__main__':
main()