-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_model.py
171 lines (156 loc) · 5.3 KB
/
test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python
u"""
test_model.py
Yara Mohajerani (Last update 07/2020)
Write History
06/2020 add user inputs
save output as npy files
05/2020 Written
"""
#-- Import Modules
import os
import sys
import getopt
import imp
import numpy as np
import matplotlib.pyplot as plt
import keras
from keras import backend as K
from keras.preprocessing import image
ninit = 16 #number of channels to start with
dropout_frac = 0.2 # dropout fraction
#-- main function
def main():
#-- Read the system arguments listed after the program
long_options=['MOD=','DOWN=','INIT=','DROPOUT=','NTEST=','RATIO=','FORMAT=']
optlist,arglist = getopt.getopt(sys.argv[1:],'M:D:I:O:N:R:F:',long_options)
#-- Set default settings
mod_lbl = 'atrous'
ninit = 32 #number of channels to start with
ndown = 4
dropout_frac = 0.2 # dropout fraction
n_test = 500
ratio = 727 # penalization ratio for GL and non-GL points based on smaller dataaset
out_form = 'npy'
for opt, arg in optlist:
if opt in ("-M","--MOD"):
mod_lbl = arg
elif opt in ("-I","--INIT"):
ninit = int(arg)
elif opt in ("-W","--DOWN"):
ndown = int(arg)
elif opt in ("-O","--DROPOUT"):
dropout_frac = int(arg)
elif opt in ("-N","--NTEST"):
n_test = int(arg)
elif opt in ("-R","--RATIO"):
ratio = int(arg)
elif opt in ("-F","--FORMAT"):
out_form = arg
#-- make model string
if mod_lbl == 'unet':
mod_str = '{0}_{1}init_{2}down_drop{3:.1f}_customLossR{4}'.format(mod_lbl,ninit,ndown,
dropout_frac,ratio)
elif mod_lbl in ['atrous','atrous_noPool']:
mod_str = '{0}_{1}init_drop{2:.1f}_customLossR{3}'.format(mod_lbl,ninit,dropout_frac,ratio)
else:
print('model label not matching.')
print(mod_str)
#-- Directory setup
gdrive = os.path.expanduser('~/Google Drive File Stream')
colabdir = os.path.join(gdrive,'My Drive','Colab Notebooks')
mod_dir = os.path.join(gdrive,'My Drive','GL_Learning')
output_dir = os.path.join(os.path.expanduser('~'),'GL_learning_data','geocoded_v1')
ddir = os.path.join(gdrive,'Shared drives','GROUNDING_LINE_TEAM_DRIVE',\
'ML_Yara','geocoded_v1')
subdir = {}
subdir['Train'] = os.path.join(ddir,'train_n%i.dir'%n_test)
subdir['Test'] = os.path.join(ddir,'test_n%i.dir'%n_test)
#-- Get list of images
file_list = {}
fileList = os.listdir(subdir['Train'])
file_list['Train'] = [f for f in fileList if (f.endswith('.npy') and f.startswith('coco'))]
fileList = os.listdir(subdir['Test'])
file_list['Test'] = [f for f in fileList if (f.endswith('.npy') and f.startswith('coco'))]
#-- get full path of files
ID_list = {}
N = {}
for t in ['Train','Test']:
ID_list[t] = [os.path.join(subdir[t],f) for f in file_list[t]]
N[t] = len(ID_list[t])
#-- read 1 file to get dimensions
im = np.load(ID_list['Train'][0])
h,wi,ch = im.shape
print(h,wi,ch)
#-- Import model
mod_module = imp.load_source('nn_model',os.path.join(colabdir,'nn_model.py'))
#-- set up model
if mod_lbl == 'unet':
print('loading unet model')
model = mod_module.unet_model_double_dropout(height=h,width=wi,channels=ch,
n_init=ninit,n_layers=ndown,
drop=dropout_frac)
elif mod_lbl == 'atrous':
print("loading atrous model")
model = mod_module.nn_model_atrous_double_dropout(height=h,width=wi,
channels=ch,
n_filts=ninit,
drop=dropout_frac)
elif mod_lbl == 'atrous_noPool':
print("loading atrous_noPool model")
model = mod_module.nn_model_atrous_noPool(height=h,width=wi,
channels=ch,
n_filts=ninit,
drop=dropout_frac)
else:
sys.exit('Model label not correct.')
#-- define custom loss function
def customLoss(yTrue,yPred):
return -1*K.mean(ratio*(yTrue*K.log(yPred+1e-32)) + ((1. - yTrue)*K.log(1-yPred+1e-32)))
#-- compile imported model
model.compile(loss=customLoss,optimizer='adam',
metrics=['accuracy'])
#-- checkpoint file
chk_file = os.path.join(mod_dir,'{0}_weights.h5'.format(mod_str))
print(chk_file)
#-- if file exists, read model from file
if os.path.isfile(chk_file):
print('Check point exists; loading model from file.')
#-- load weights
model.load_weights(chk_file)
else:
sys.exit('Model does not exist.')
#-------------------------------
#-- Run on train and test data
#-------------------------------
for t in ['Train','Test']:
print(t)
#-- make output directory
out_dir = os.path.join(output_dir,'{0}_predictions.dir'.format(t),\
'{0}.dir'.format(mod_str))
if (not os.path.isdir(out_dir)):
os.mkdir(out_dir)
#-- read 500 files at a time (memory bottleneck)
cc = 0
while (cc < N[t]):
print(cc)
#-- Read data all at once
test_imgs = np.ones((500,h,wi,ch))
for i,f in enumerate(ID_list[t][cc:cc+500]):
test_imgs[i,] = np.load(f)
out_imgs = model.predict(test_imgs, batch_size=1, verbose=1)
out_imgs = out_imgs.reshape(out_imgs.shape[0],h,wi,out_imgs.shape[2])
#-- save output images
for i,f in enumerate(ID_list[t][cc:cc+500]):
if out_form == 'png':
im = image.array_to_img(out_imgs[i])
im.save(os.path.join(out_dir,os.path.basename(f).replace('coco','pred').replace('npy','png')))
elif out_form == 'npy':
np.save(os.path.join(out_dir,os.path.basename(f).replace('coco','pred')),out_imgs[i])
else:
sys.exit('Output format not recognized.')
#-- increment counter
cc += 500
#-- run main program
if __name__ == '__main__':
main()