-
Notifications
You must be signed in to change notification settings - Fork 961
/
static_image.js
272 lines (236 loc) · 8.15 KB
/
static_image.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as posenet_module from '@tensorflow-models/posenet';
import * as facemesh_module from '@tensorflow-models/facemesh';
import * as tf from '@tensorflow/tfjs';
import * as paper from 'paper';
import "babel-polyfill";
import dat from 'dat.gui';
import {SVGUtils} from './utils/svgUtils'
import {PoseIllustration} from './illustrationGen/illustration';
import {Skeleton, facePartName2Index} from './illustrationGen/skeleton';
import {toggleLoadingUI, setStatusText} from './utils/demoUtils';
import * as boySVG from './resources/illustration/boy.svg';
import * as girlSVG from './resources/illustration/girl.svg';
import * as abstractSVG from './resources/illustration/abstract.svg';
import * as blathersSVG from './resources/illustration/blathers.svg';
import * as tomNookSVG from './resources/illustration/tom-nook.svg';
import * as boy_doughnut from './resources/images/boy_doughnut.jpg';
import * as tie_with_beer from './resources/images/tie_with_beer.jpg';
import * as test_img from './resources/images/test.png';
import * as full_body from './resources/images/full-body.png';
import * as full_body_1 from './resources/images/full-body_1.png';
import * as full_body_2 from './resources/images/full-body_2.png';
// clang-format off
import {
drawKeypoints,
drawPoint,
drawSkeleton,
renderImageToCanvas,
} from './utils/demoUtils';
import { FileUtils } from './utils/fileUtils';
// clang-format on
const resnetArchitectureName = 'MobileNetV1';
const avatarSvgs = {
'girl': girlSVG.default,
'boy': boySVG.default,
'abstract': abstractSVG.default,
'blathers': blathersSVG.default,
'tom-nook': tomNookSVG.default,
};
const sourceImages = {
'boy_doughnut': boy_doughnut.default,
'tie_with_beer': tie_with_beer.default,
'test_img': test_img.default,
'full_body': full_body.default,
'full_body_1': full_body_1.default,
'full_body_2': full_body_2.default,
};
let skeleton;
let illustration;
let canvasScope;
let posenet;
let facemesh;
const VIDEO_WIDTH = 513;
const VIDEO_HEIGHT = 513;
const CANVAS_WIDTH = 513;
const CANVAS_HEIGHT = 513;
const defaultQuantBytes = 2;
const defaultMultiplier = 1.0;
const defaultStride = 16;
const defaultInputResolution = 257;
const defaultMaxDetections = 1;
const defaultMinPartConfidence = 0.1;
const defaultMinPoseConfidence = 0.2;
const defaultNmsRadius = 20.0;
let predictedPoses;
let faceDetection;
let sourceImage;
/**
* Draws a pose if it passes a minimum confidence onto a canvas.
* Only the pose's keypoints that pass a minPartConfidence are drawn.
*/
function drawResults(image, canvas, faceDetection, poses) {
renderImageToCanvas(image, [VIDEO_WIDTH, VIDEO_HEIGHT], canvas);
const ctx = canvas.getContext('2d');
poses.forEach((pose) => {
if (pose.score >= defaultMinPoseConfidence) {
if (guiState.showKeypoints) {
drawKeypoints(pose.keypoints, defaultMinPartConfidence, ctx);
}
if (guiState.showSkeleton) {
drawSkeleton(pose.keypoints, defaultMinPartConfidence, ctx);
}
}
});
if (guiState.showKeypoints) {
faceDetection.forEach(face => {
Object.values(facePartName2Index).forEach(index => {
let p = face.scaledMesh[index];
drawPoint(ctx, p[1], p[0], 3, 'red');
});
});
}
}
async function loadImage(imagePath) {
const image = new Image();
const promise = new Promise((resolve, reject) => {
image.crossOrigin = '';
image.onload = () => {
resolve(image);
}
});
image.src = imagePath;
return promise;
}
function multiPersonCanvas() {
return document.querySelector('#multi canvas');
}
function getIllustrationCanvas() {
return document.querySelector('.illustration-canvas');
}
/**
* Draw the results from the multi-pose estimation on to a canvas
*/
function drawDetectionResults() {
const canvas = multiPersonCanvas();
drawResults(sourceImage, canvas, faceDetection, predictedPoses);
if (!predictedPoses || !predictedPoses.length || !illustration) {
return;
}
skeleton.reset();
canvasScope.project.clear();
if (faceDetection && faceDetection.length > 0) {
let face = Skeleton.toFaceFrame(faceDetection[0]);
illustration.updateSkeleton(predictedPoses[0], face);
} else {
illustration.updateSkeleton(predictedPoses[0], null);
}
illustration.draw(canvasScope, sourceImage.width, sourceImage.height);
if (guiState.showCurves) {
illustration.debugDraw(canvasScope);
}
if (guiState.showLabels) {
illustration.debugDrawLabel(canvasScope);
}
}
/**
* Loads an image, feeds it into posenet the posenet model, and
* calculates poses based on the model outputs
*/
async function testImageAndEstimatePoses() {
toggleLoadingUI(true);
setStatusText('Loading FaceMesh model...');
document.getElementById('results').style.display = 'none';
// Reload facemesh model to purge states from previous runs.
facemesh = await facemesh_module.load();
// Load an example image
setStatusText('Loading image...');
sourceImage = await loadImage(sourceImages[guiState.sourceImage]);
// Estimates poses
setStatusText('Predicting...');
predictedPoses = await posenet.estimatePoses(sourceImage, {
flipHorizontal: false,
decodingMethod: 'multi-person',
maxDetections: defaultMaxDetections,
scoreThreshold: defaultMinPartConfidence,
nmsRadius: defaultNmsRadius,
});
faceDetection = await facemesh.estimateFaces(sourceImage, false, false);
// Draw poses.
drawDetectionResults();
toggleLoadingUI(false);
document.getElementById('results').style.display = 'block';
}
let guiState = {
// Selected image
sourceImage: Object.keys(sourceImages)[0],
avatarSVG: Object.keys(avatarSvgs)[0],
// Detection debug
showKeypoints: true,
showSkeleton: true,
// Illustration debug
showCurves: false,
showLabels: false,
};
function setupGui() {
const gui = new dat.GUI();
const imageControls = gui.addFolder('Image');
imageControls.open();
gui.add(guiState, 'sourceImage', Object.keys(sourceImages)).onChange(() => testImageAndEstimatePoses());
gui.add(guiState, 'avatarSVG', Object.keys(avatarSvgs)).onChange(() => loadSVG(avatarSvgs[guiState.avatarSVG]));
const debugControls = gui.addFolder('Debug controls');
debugControls.open();
gui.add(guiState, 'showKeypoints').onChange(drawDetectionResults);
gui.add(guiState, 'showSkeleton').onChange(drawDetectionResults);
gui.add(guiState, 'showCurves').onChange(drawDetectionResults);
gui.add(guiState, 'showLabels').onChange(drawDetectionResults);
}
/**
* Kicks off the demo by loading the posenet model and estimating
* poses on a default image
*/
export async function bindPage() {
toggleLoadingUI(true);
canvasScope = paper.default;
let canvas = getIllustrationCanvas();
canvas.width = CANVAS_WIDTH;
canvas.height = CANVAS_HEIGHT;
canvasScope.setup(canvas);
await tf.setBackend('webgl');
setStatusText('Loading PoseNet model...');
posenet = await posenet_module.load({
architecture: resnetArchitectureName,
outputStride: defaultStride,
inputResolution: defaultInputResolution,
multiplier: defaultMultiplier,
quantBytes: defaultQuantBytes
});
setupGui(posenet);
setStatusText('Loading SVG file...');
await loadSVG(Object.values(avatarSvgs)[0]);
}
window.onload = bindPage;
FileUtils.setDragDropHandler(loadSVG);
// Target is SVG string or path
async function loadSVG(target) {
let svgScope = await SVGUtils.importSVG(target);
skeleton = new Skeleton(svgScope);
illustration = new PoseIllustration(canvasScope);
illustration.bindSkeleton(skeleton, svgScope);
testImageAndEstimatePoses();
}