forked from RESEARCHINGETERNITYEGPHILIPPOV/mm0
-
Notifications
You must be signed in to change notification settings - Fork 1
/
mm0.mm0
1069 lines (931 loc) · 42.8 KB
/
mm0.mm0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import "peano_hex.mm0";
-- The sort modifiers 'pure', 'strict', 'provable', 'free'
--| `sPure : SortData -> Bool`
def sPure (n: nat): wff = $ true (pi11 n) $;
--| `sStrict : SortData -> Bool`
def sStrict (n: nat): wff = $ true (pi12 n) $;
--| `sProvable : SortData -> Bool`
def sProvable (n: nat): wff = $ true (pi21 n) $;
--| `sFree : SortData -> Bool`
def sFree (n: nat): wff = $ true (pi22 n) $;
-- A binder is either a bound variable with sort s, or a regular variable
-- with sort s and dependencies vs.
--| `PBound : SortID -> Binder`
def PBound (s: nat): nat = $ b0 s $;
--| `PReg : SortID -> set VarID -> Binder`
def PReg (s vs: nat): nat = $ b1 (s <> vs) $;
--| Get the sort of a binder.
--|
--| `binderSort : Binder -> SortID`
def binderSort (x: nat): nat;
theorem binderSortBound (s: nat): $ binderSort (PBound s) = s $;
theorem binderSortReg (s vs: nat): $ binderSort (PReg s vs) = s $;
-- An s-expression, representing the terms and formulas. It can be either a
-- variable (v is a VarID) or an application of the term with TermID `f`
-- to arguments `x` (a list of s-expressions).
--| `SVar : VarID -> SExpr`
def SVar (v: nat): nat = $ b0 v $;
--| `SApp : TermID -> list SExpr -> SExpr`
def SApp (f x: nat): nat = $ b1 (f <> x) $;
-- The environment is composed of declarations, which come in a few types:
--| A `sort` declaration has an associated `SortData` with the sort modifiers.
--| Sorts are indexed by SortID and picked out by `getSD`.
--|
--| `DSort : SortID -> SortData -> Decl`
def DSort (id sd: nat): nat = $ b0 (b0 (b0 (id <> sd))) $;
--| A `term` declaration has a list of binders, and a target type (a DepType,
--| which is a `(SortID, set VarID)` pair).
--| Terms are indexed by TermID and picked out by `getTerm`.
--|
--| `DTerm : TermID -> Ctx -> DepType -> Decl`
def DTerm (id args ret: nat): nat = $ b0 (b0 (b1 (id <> args <> ret))) $;
--| An `axiom` declaration has a list of binders, a list of hypotheses,
--| and a consequent.
--|
--| Axioms are not indexed, they are simply found by statement.
--|
--| `DAxiom : Ctx -> list SExpr -> SExpr -> Decl`
def DAxiom (args hs ret: nat): nat = $ b0 (b1 (args <> hs <> ret)) $;
--| A `def` declaration is the same as a `term` except it also has an optional
--| definition component which lists the sorts of the dummy variables and the
--| definition's expression.
--|
--| Defs are indexed by TermID and picked out by `getTerm`.
--|
--| `DDef : TermID -> Ctx -> DepType -> option (list SortID, SExpr) -> Decl`
def DDef (id args ret def: nat): nat =
$ b1 (b0 (id <> args <> ret <> def)) $;
--| A `theorem` declaration is exactly the same structure as an `axiom`, but
--| the interpretation is different - theorems require proofs, while axioms are
--| added in the spec.
--|
--| Theorems are not indexed, they are simply found by statement.
--|
--| `DThm : Ctx -> list SExpr -> SExpr -> Decl`
def DThm (vs hs ret: nat): nat = $ b1 (b1 (vs <> hs <> ret)) $;
--| This function extracts the `SortData` for a sort given by `SortID`.
--|
--| `getSD : Env -> SortID -> SortData -> Bool`
def getSD (env id sd: nat): wff = $ DSort id sd IN env $;
--| This function gets the term and definition data for a term.
--|
--| `getTerm : Env -> TermID -> Ctx -> DepType -> option (list SortID, SExpr) -> Bool`
def getTerm (env id a r v: nat): wff =
$ v = 0 /\ DTerm id a r IN env \/ DDef id a r v IN env $;
--| This function gets the data for an axiom or theorem.
--|
--| `getThm : Env -> Ctx -> list SExpr -> SExpr -> Bool`
def getThm (env a h r: nat): wff =
$ DAxiom a h r IN env \/ DThm a h r IN env $;
--| Is this ID a valid sort?
--|
--| `isSort : Env -> SortID -> Bool`
def isSort (env s .sd: nat): wff = $ E. sd getSD env s sd $;
--| Looks this variable up in the context, and reports whether it represents a
--| bound variable.
--|
--| `isBound : Ctx -> VarID -> Bool`
def isBound (ctx x .s: nat): wff = $ E. s nth x ctx = suc (PBound s) $;
--| Checks if this a well formed dependent type in the context. A DepType is a
--| pair (SortID, set VarID) giving the sort and the variable dependencies.
--|
--| `DepType : Env -> Ctx -> DepType -> Bool`
def DepType (env ctx ty .x: nat): wff =
$ isSort env (fst ty) /\ A. x (x e. snd ty -> isBound ctx x) $;
--| Checks if this a well formed context. A context can be extended with a bound
--| variable binder if the sort of the binder is not `strict`.
--| Note `Ctx = list Binder`.
--|
--| `Ctx : Env -> Ctx -> Bool`
def Ctx (env ctx: nat): wff;
theorem Ctx0 (env: nat): $ Ctx env 0 $;
theorem CtxBound (env ctx s: nat) {sd: nat}: $ Ctx env (ctx |> PBound s) <->
Ctx env ctx /\ E. sd (getSD env s sd /\ ~ sStrict sd) $;
theorem CtxReg (env ctx s vs: nat): $ Ctx env (ctx |> PReg s vs) <->
Ctx env ctx /\ DepType env ctx (s <> vs) $;
--| These mutually recursive functions check if an expression `e` is well-typed
--| with sort `s`, and that `e` is well-typed and valid for entry into a binder
--| `bi`. The main difference is that for an expression to be valid for a
--| BV binder, the expression must itself be a bound variable.
--|
--| `Expr : Env -> Ctx -> SExpr -> SortID -> Bool`
def Expr (env ctx e s: nat): wff;
--| `ExprBi : Env -> Ctx -> SExpr -> Binder -> Bool`
def ExprBi (env ctx e bi: nat): wff;
theorem ExprVar (env ctx v s: nat) {bi: nat}: $ Expr env ctx (SVar v) s <->
E. bi (nth v ctx = suc bi /\ binderSort bi = s) $;
theorem ExprApp (env ctx f xs s: nat) {args ret o x a: nat}:
$ Expr env ctx (SApp f xs) s <-> E. args E. ret E. o
(getTerm env f args ret o /\
xs <> args e. all2 (S\ x, {a | ExprBi env ctx x a}) /\
s = fst ret) $;
theorem ExprBiBound (env ctx e s: nat) {v: nat}:
$ ExprBi env ctx e (PBound s) <->
E. v (e = SVar v /\ nth v ctx = suc (PBound s)) $;
theorem ExprBiReg (env ctx e s vs: nat):
$ ExprBi env ctx e (PReg s vs) <-> Expr env ctx e s $;
--| Is this a type correct expression of provable type? This is used to
--| typecheck expressions appearing in hypotheses and conclusions of
--| axiom/theorem.
--|
--| `ExprProv : Env -> Ctx -> SExpr -> Bool`
def ExprProv (env ctx e .s .sd: nat): wff =
$ E. s E. sd (Expr env ctx e s /\ getSD env s sd /\ sProvable sd) $;
--| A helper function to add dummy variables to the context.
--|
--| `appendDummies : Ctx -> list SortID -> Ctx`
def appendDummies (ctx ds .d: nat): nat = $ ctx ++ map (\ d, PBound d) ds $;
--| Does this expression contain any occurrence of the variable `v`? This check
--| ignores bound variables, "metamath style". We use this stricter check for
--| verifying theorem applications.
--|
--| `HasVar : Ctx -> SExpr -> VarID -> Bool`
def HasVar (ctx e v: nat): wff;
theorem HasVarBound (ctx u v s: nat):
$ nth u ctx = suc (PBound s) -> (HasVar ctx (SVar u) v <-> u = v) $;
theorem HasVarReg (ctx u v s vs: nat):
$ nth u ctx = suc (PReg s vs) -> (HasVar ctx (SVar u) v <-> v e. vs) $;
theorem HasVarApp (ctx f es v: nat) {e: nat}:
$ HasVar ctx (SApp f es) v <-> E. e (e IN es /\ HasVar ctx e v) $;
--| A helper function for `Free`. This constructs the set `_V \ deps(a)` if `a`
--| is a regular argument and `(/)` if `a` is a bound argument.
--|
--| `MaybeFreeArgs : list SExpr -> Binder -> VarID -> Bool`
def MaybeFreeArgs (es a v .s .vs .u: nat): wff =
$ E. s E. vs (a = PReg s vs /\ ~(E. u (u e. vs /\ nth u es = suc (SVar v)))) $;
--| Does this expression contain any _free_ occurrence of the variable `v`?
--| This is the more complex binder-respecting check. Intuitively, if
--| `term foo {x y: set} (ph: set x): set y;`, then `foo` binds occurrences of
--| `x` in `ph`, and adds a dependency on `y` regardless. We might write this
--| as `FV(foo x y ph) = (FV(ph) \ {x}) u {y}`, but the definition below is
--| for arbitrary binding structures.
--|
--| `Free : Env -> Ctx -> SExpr -> VarID -> Bool`
def Free (env ctx e v: nat): wff;
theorem FreeVar (env ctx u v: nat):
$ Free env ctx (SVar u) v <-> HasVar ctx (SVar u) v $;
theorem FreeApp (env ctx f es v: nat) {args r rs o n e a u: nat}:
$ Free env ctx (SApp f es) v <-> E. args E. r E. rs E. o
(getTerm env f args (r <> rs) o /\
(es <> args e. ex2 (S\ e, {a | Free env ctx e v /\ MaybeFreeArgs es a v}) \/
E. u (u e. rs /\ nth u es = suc (SVar v)))) $;
--| Is this a valid term in the given environment? A term is valid if
--| the argument list is valid, the return type is valid, and the return sort
--| is not `pure` (because `pure` sorts are not allowed to have term
--| constructors).
--|
--| `TermOk : Env -> TermID -> Ctx -> DepType -> Bool`
def TermOk (env id args ret .a .r .v .sd: nat): wff =
$ ~E. a E. r E. v getTerm env id a r v /\
Ctx env args /\ DepType env args ret /\
E. sd (getSD env (fst ret) sd /\ ~ sPure sd) $;
--| Is this a valid definition in the given environment? A definition is valid
--| if it is a valid term, and the definition typechecks, and all free variables
--| are declared in the return type. (Note in particular that dummies cannot
--| appear in the return type dependencies, so this ensures that all dummies are
--| bound by the definition.)
--|
--| `DefOk : Env -> TermID -> Ctx -> DepType -> Bool`
def DefOk (env id args ret ds e .ctx .v .s .sd: nat): wff =
$ TermOk env id args ret /\ [ appendDummies args ds / ctx ]
(Ctx env ctx /\ Expr env ctx e (fst ret) /\
A. v (Free env ctx e v -> v e. snd ret \/
E. sd E. s (nth v ctx = suc (PBound s) /\
getSD env s sd /\ sFree sd))) $;
--| Is this a valid declaration in the environment?
--|
--| `Decl : Env -> Decl -> Bool`
def Decl (env d: nat): wff;
theorem DeclSort (env id sd: nat): $ Decl env (DSort id sd) $;
theorem DeclTerm (env id args ret: nat):
$ Decl env (DTerm id args ret) <-> TermOk env id args ret $;
theorem DeclAxiom (env args hs ret: nat) {x: nat}:
$ Decl env (DAxiom args hs ret) <->
Ctx env args /\ all {x | ExprProv env args x} (ret : hs) $;
theorem DeclDef (env id args ret: nat) {ds e o v: nat}:
$ Decl env (DDef id args ret o) <-> TermOk env id args ret /\
A. ds A. e (o = suc (ds <> e) -> DefOk env id args ret ds e) $;
theorem DeclThm (env args hs ret: nat) {x: nat}:
$ Decl env (DThm args hs ret) <->
Ctx env args /\ all {x | ExprProv env args x} (ret : hs) $;
--| This defines a valid mm0 specification. These are well formed ASTs for which
--| we can assign a provability predicate.
--|
--| `Env : Env -> Bool`
def Env (e: nat): wff;
theorem Env0: $ Env 0 $;
theorem EnvS (e s: nat): $ Env (e |> s) <-> Env e /\ Decl e s $;
--| `EnvExtend e1 e2` means that environment `e2` is an extension of `e1`,
--| meaning that all sorts, terms, and axioms are preserved, but abstract defs
--| may be provided definitions, and new defs and theorems can be added.
--|
--| `EnvExtend : Env -> Env -> Bool`
def EnvExtend (e1 e2: nat): wff;
theorem EnvExtend0 (e: nat): $ EnvExtend e 0 <-> e = 0 $;
theorem EnvExtendSort (e1 e2 id sd: nat) {e: nat}:
$ EnvExtend e1 (e2 |> DSort id sd) <->
E. e (e1 = e |> DSort id sd /\ EnvExtend e e2) $;
theorem EnvExtendTerm (e1 e2 id a r: nat) {e: nat}:
$ EnvExtend e1 (e2 |> DTerm id a r) <->
E. e (e1 = e |> DTerm id a r /\ EnvExtend e e2) $;
theorem EnvExtendAxiom (e1 e2 a h r: nat) {e: nat}:
$ EnvExtend e1 (e2 |> DAxiom a h r) <->
E. e (e1 = e |> DAxiom a h r /\ EnvExtend e e2) $;
theorem EnvExtendDef (e1 e2 id a r o: nat) {e o2: nat}:
$ EnvExtend e1 (e2 |> DDef id a r o) <->
E. e E. o2 ((o2 != 0 -> o2 = o) /\
e1 = e |> DDef id a r o2 /\ EnvExtend e e2) \/
EnvExtend e1 e2 $;
theorem EnvExtendThm (e1 e2 id a h r: nat) {e: nat}:
$ EnvExtend e1 (e2 |> DThm a h r) <->
E. e (e1 = e |> DThm a h r /\ EnvExtend e e2) \/
EnvExtend e1 e2 $;
------------------
-- Verification --
------------------
--| This performs simultaneous substitution of the variables in `e` with the
--| expressions in `subst`.
--|
--| `substExpr : list SExpr -> SExpr => SExpr`
def substExpr (subst e: nat): nat;
theorem substExprVar (subst v e: nat):
$ substExpr subst (SVar v) = nth v subst - 1 $;
theorem substExprApp (subst f es: nat) {e: nat}:
$ substExpr subst (SApp f es) = SApp f (map (\ e, substExpr subst e) es) $;
--| A CExpr is a convertibility proof:
--| `CRefl e : e = e`
--|
--| `CRefl : SExpr -> CExpr`
def CRefl (e: nat): nat = $ b0 (b0 e) $;
--| If `p : e = e'`, then `CSymm p : e' = e`
--|
--| `CSymm : CExpr -> CExpr`
def CSymm (p: nat): nat = $ b0 (b1 p) $;
--| If `{p : e = e'}` then `CCong f {p} : f {e} = f {e'}`
--| where the braces denote iteration
--|
--| `CCong : TermID -> list CExpr -> CExpr`
def CCong (f cs: nat): nat = $ b1 (b0 (f <> cs)) $;
--| If `f {x} := {y}. e'`, then
--| `p : e'[{x}, {y} -> {e}, {z}] = e'' |- CCong f {z} p : f {e} = e''`
--|
--| `CUnfold : TermID -> list VarID -> CExpr -> CExpr`
def CUnfold (f es zs c: nat): nat = $ b1 (b1 (f <> es <> zs <> c)) $;
-- A `VExpr` is a proof term.
--| A `VHyp` is a hypothesis step - a term is asserted from the local context.
--| Indexing is relative to the list of hypotheses to the theorem.
--|
--| `VHyp : HypID -> VExpr`
def VHyp (n: nat): nat = $ b0 (b0 n) $;
--| A `VThm` is a theorem application - a step follows from previous steps by
--| application of a theorem. The arguments give the theorem to apply, the list
--| of substitutions of expressions for the variables, and the list of subproofs
--| for the hypotheses to the theorem.
--|
--| `VThm : ThmID -> list SExpr -> list VExpr -> VExpr`
def VThm (a h r es ps: nat): nat = $ b0 (b1 (a <> h <> r <> es <> ps)) $;
--| `c : A = B, p : A |- VConv c p : B`
--|
--| `VConv : CExpr -> VExpr -> VExpr`
def VConv (c p: nat): nat = $ b1 (c <> p) $;
--| Checking a conversion proof `c : (e1 : s) = (e2 : s)`.
--| `VerifyConv : Env -> Ctx -> CExpr -> SExpr -> SExpr -> SortID -> Bool`
def VerifyConv (env ctx c e1 e2 s: nat): wff;
--| `VerifyConvs : Env -> Ctx -> list CExpr -> list SExpr ->
--| list SExpr -> list Binder -> Bool`
def VerifyConvs (env ctx cs es1 es2 bis .n .i .c .e1 .e2 .bi: nat): wff =
$ E. n (len cs = n /\ len es1 = n /\ len es2 = n /\ len bis = n /\
A. i A. c A. e1 A. e2 A. bi (nth i cs = suc c ->
nth i es1 = suc e1 -> nth i es2 = suc e2 -> nth i bis = suc bi ->
ExprBi env ctx e1 bi /\ ExprBi env ctx e2 bi /\
VerifyConv env ctx c e1 e2 (binderSort bi))) $;
theorem VerifyConvRefl (env ctx e e1 e2 s: nat):
$ VerifyConv env ctx (CRefl e) e1 e2 s <->
Expr env ctx e s /\ e = e1 /\ e = e2 $;
theorem VerifyConvSymm (env ctx c e1 e2 s: nat):
$ VerifyConv env ctx (CSymm c) e1 e2 s <-> VerifyConv env ctx c e2 e1 s $;
theorem VerifyConvCong (env ctx f cs e1 e2 s: nat) {args ret o es1 es2: nat}:
$ VerifyConv env ctx (CCong f cs) e1 e2 s <->
E. args E. ret E. o E. es1 E. es2 (
e1 = SApp f es1 /\ e2 = SApp f es2 /\
getTerm env f args ret o /\
VerifyConvs env ctx cs es1 es2 args /\
s = fst ret) $;
theorem VerifyConvUnfold (env ctx f zs c e1 e2 s: nat)
{args ret ys val es a y z e i: nat}:
$ VerifyConv env ctx (CUnfold f es zs c) e1 e2 s <->
E. args E. ret E. ys E. val (
getTerm env f args ret (suc (ys <> val)) /\
e1 = SApp f es /\ s = fst ret /\
es <> args e. all2 (S\ e, {a | ExprBi env ctx e a}) /\
ys <> zs e. all2 (S\ y, {z | nth z ctx = suc (PBound y) /\
A. e (e IN es -> ~HasVar ctx e z)}) /\
VerifyConv env ctx c (substExpr (es ++ map (\ i, SVar i) zs) val) e2 s) $;
--| The main proof checking function.
--|
--| This typechecks a `VExpr` and determines the `SExpr` that it represents.
--| * At a hypothesis step, this is just looking up the
--| nth element in the list.
--| * At a theorem step, we get the theorem data,
--| check that all the substituting expressions match the binders they are going
--| in for, check that all the disjoint variable conditions of the theorem
--| are honored by the substitution, and then check recursively that the
--| subproofs are okay and the return is what it should be.
--|
--| `VerifyProof : Env -> Ctx -> list SExpr -> VExpr -> SExpr -> Bool`
def VerifyProof (env ctx hs pf ret: nat): wff;
theorem VerifyProofHyp (env ctx hs n ret: nat):
$ VerifyProof env ctx hs (VHyp n) ret <-> nth n hs = suc ret $;
theorem VerifyProofThm (env ctx hs args2 hs2 ret2 es ps ret: nat)
{args e a u v s y e2 p h: nat}:
$ VerifyProof env ctx hs (VThm args2 hs2 ret2 es ps) ret <->
(getThm env args2 hs2 ret2 /\
es <> args2 e. all2 (S\ e, {a | ExprBi env ctx e a}) /\
A. u A. v (E. s nth u ctx = suc (PBound s) ->
v < len ctx -> ~HasVar ctx (SVar v) u ->
A. y A. e2 (nth u es = suc (SVar y) -> nth v es = suc e2 ->
~HasVar ctx e2 y)) /\
ps <> hs2 e. all2 (S\ p, {h | VerifyProof env ctx hs p (substExpr es h)}) /\
substExpr es ret2 = ret) $;
theorem VerifyProofConv (env ctx hs c p ret: nat) {e1 s: nat}:
$ VerifyProof env ctx hs (VConv c p) ret <->
E. e1 E. s (
VerifyConv env ctx c e1 ret s /\
VerifyProof env ctx hs p e1) $;
--| The main recursion for the proof judgment on an environment.
--| * `env`: The declarations that have already been processed.
--| * `e`: The declarations we are still stepping through.
--| * `p` is a proof object whose existence entails provability of the environment.
--|
--| `Proof : Env -> Proof -> Bool`
def Proof (env p: nat): wff;
theorem Proof0 (p: nat): $ Proof 0 p <-> p = 0 $;
theorem ProofSort (env id sd p: nat):
$ Proof (env |> DSort id sd) p <-> Proof env p $;
theorem ProofTerm (env id a r p: nat):
$ Proof (env |> DTerm id a r) p <-> Proof env p $;
theorem ProofAxiom (env a h r p: nat):
$ Proof (env |> DAxiom a h r) p <-> Proof env p $;
theorem ProofDef (env id a r o p: nat):
$ Proof (env |> DDef id a r o) p <-> Proof env p /\ o != 0 $;
theorem ProofThm (env e p a h r: nat) {p1 ds pf ctx: nat}:
$ Proof (env |> DThm a h r) p <-> E. p1 E. ds E. pf E. ctx (
p = p1 <> ds <> pf /\ Proof env p1 /\
ctx = appendDummies a ds /\ Ctx env ctx /\
VerifyProof env ctx h pf r) $;
-- A specification is provable if some extension of the specification has a proof.
-- The extension provides definitions for the providing all the omitted definitions and proving all the theorems in the
-- file.
-- ValidEnv : Env -> Bool
def ValidEnv (env .e .p: nat): wff = $ E. e (EnvExtend env e /\ E. p Proof e p) $;
-------------
-- Parsing --
-------------
-- Definition of ASCII, or at least the part of it we need
--| `\n`: newline character
def _nl: char = $ ch x0 xa $;
--| ` `: space
def __: char = $ ch x2 x0 $;
--| `$`: dollar sign
def _dollar: char = $ ch x2 x4 $;
--| `(`: left parenthesis
def _lparen: char = $ ch x2 x8 $;
--| `)`: right parenthesis
def _rparen: char = $ ch x2 x9 $;
--| `*`: asterisk / multiplication symbol
def _ast: char = $ ch x2 xa $;
--| `-`: hyphen / minus sign
def _hyphen: char = $ ch x2 xd $;
--| `.`: dot / period / full stop
def _dot: char = $ ch x2 xe $;
--| `:`: colon
def _colon: char = $ ch x3 xa $;
--| `;`: semicolon
def _semi: char = $ ch x3 xb $;
--| `=`: equal sign
def _equal: char = $ ch x3 xd $;
--| `>`: greater than, right arrow
def _gt: char = $ ch x3 xe $;
--| `_`: underscore (note: __ is space)
def _under: char = $ ch x5 xf $;
--| `{`: left brace / curly bracket
def _lbrace: char = $ ch x7 xb $;
--| `}`: right brace / curly bracket
def _rbrace: char = $ ch x7 xd $;
-- ASCII numbers
def _0: char = $ ch x3 x0 $;
def _1: char = $ ch x3 x1 $;
def _2: char = $ ch x3 x2 $;
def _3: char = $ ch x3 x3 $;
def _4: char = $ ch x3 x4 $;
def _5: char = $ ch x3 x5 $;
def _6: char = $ ch x3 x6 $;
def _7: char = $ ch x3 x7 $;
def _8: char = $ ch x3 x8 $;
def _9: char = $ ch x3 x9 $;
-- Don't really need capitals except as a range
def _A: char = $ ch x4 x1 $;
def _Z: char = $ ch x5 xa $;
-- Most of the lowercase alphabet, used in keywords
def _a: char = $ ch x6 x1 $;
def _b: char = $ ch x6 x2 $;
def _c: char = $ ch x6 x3 $;
def _d: char = $ ch x6 x4 $;
def _e: char = $ ch x6 x5 $;
def _f: char = $ ch x6 x6 $;
def _h: char = $ ch x6 x8 $;
def _i: char = $ ch x6 x9 $;
def _l: char = $ ch x6 xc $;
def _m: char = $ ch x6 xd $;
def _n: char = $ ch x6 xe $;
def _o: char = $ ch x6 xf $;
def _p: char = $ ch x7 x0 $;
def _r: char = $ ch x7 x2 $;
def _s: char = $ ch x7 x3 $;
def _t: char = $ ch x7 x4 $;
def _u: char = $ ch x7 x5 $;
def _v: char = $ ch x7 x6 $;
def _x: char = $ ch x7 x8 $;
def _z: char = $ ch x7 xa $;
-- Now we define the lexer:
def prefix (s t .x: nat): wff = $ E. x s ++ x = t $;
def maxPrefix (A: set) (s: nat): nat;
theorem maxPrefix0 {x: nat} (A: set) (s: nat):
$ ~ (E. x (prefix x s /\ x e. A)) -> maxPrefix A s = 0 $;
theorem maxPrefixS {x y t: nat} (A: set) (s: nat):
$ E. x (prefix x s /\ x e. A) ->
E. x E. t (x ++ t = s /\ x e. A /\
A. y (prefix y s /\ y e. A -> prefix y x) /\
maxPrefix A s = suc (x <> t)) $;
def regexStar (R: set) (.s .t .L .x .y: nat): set =
$ S\ s, {t | E. L (L <> t e. all2 R /\ s = ljoin L)} $;
def regexApp (R S: set) (.z .a .b .x .y: nat): set =
$ {z | E. x E. y E. a E. b (x <> a e. R /\ y <> b e. S /\
z = (x ++ y) <> (a <> b))} $;
infixr regexApp: $<+>$ prec 75;
def regexPlus (R: set) (.x: nat): set =
$ regexStar R i^i {x | snd x != 0} $;
def regexOpt (R: set) (.s .t .y: nat): set =
$ sn 0 u. S\ s, {t | E. y (s <> y e. R /\ t = suc y)} $;
--| The set of whitespace characters
--|
--| `white : set char`
def white: nat = $ __ ; sn _nl $;
def regexLineComment (.x .y: nat): set =
$ (\ x, _hyphen : _hyphen : x ++ _nl : 0) '' {x | all {y | y != _nl} x} $;
def whitespace (.c: nat): set =
$ ((\ c, c : 0) '' white) u. regexLineComment $;
def regexMath (.x .y: nat): set =
$ (\ x, _dollar : x ++ _dollar : 0) '' {x | all {y | y != _dollar} x} $;
def IdentStart (.c: nat): set =
$ {c | (_a <= c /\ c <= _z) \/ (_A <= c /\ c <= _Z) \/ c = _under} $;
def digits (.c: nat): set = $ {c | _0 <= c /\ c <= _9} $;
def IdentRest (.c: nat): set = $ IdentStart u. digits $;
def regexIdent (.s .x .y .t: nat): set =
$ {s | E. x E. t (s = x : t /\ x e. IdentStart /\ all IdentRest t)} $;
def isNumber (.s .x .y .t: nat): set =
$ sn (_0 : 0) u. {s | E. x E. t (s = x : t /\
_1 <= x /\ x <= _9 /\ all digits t)} $;
def symbols: nat =
$ _ast ; _dot ; _colon ; _semi ; _lparen ; _rparen ;
_gt ; _lbrace ; _rbrace ; sn _equal $;
def TK (s: nat): nat = $ b0 s $;
def MATH (s: nat): nat = $ b1 s $;
def Tokenize (s: nat): nat;
theorem Tokenize0: $ Tokenize 0 = suc 0 $;
theorem TokenizeWS (s x: nat):
$ s e. whitespace -> Tokenize (s ++ x) = Tokenize x $;
theorem TokenizeIdent {t: nat} (s x r: nat):
$ maxPrefix regexIdent s = suc (x <> r) ->
Tokenize s = obind (Tokenize r) (\ t, suc (TK x : t)) $;
theorem TokenizeNumber {t: nat} (s x r: nat):
$ maxPrefix isNumber s = suc (x <> r) ->
Tokenize s = obind (Tokenize r) (\ t, suc (TK x : t)) $;
theorem TokenizeSymbol {t: nat} (c x: nat):
$ c e. symbols -> Tokenize (c : x) =
obind (Tokenize x) (\ t, suc (TK (c : 0) : t)) $;
theorem TokenizeMath {t: nat} (s x: nat):
$ s e. regexMath -> Tokenize (s ++ x) =
obind (Tokenize x) (\ t, suc (MATH s : t)) $;
theorem TokenizeElse {x: nat} (s: nat):
$ s != 0 ->
~(E. x (x e. whitespace /\ prefix x s)) ->
maxPrefix regexIdent s = 0 ->
maxPrefix isNumber s = 0 ->
~(E. x (x e. symbols /\ prefix (x : 0) s)) ->
~(E. x (x e. regexMath /\ prefix x s)) ->
Tokenize s = 0 $;
-- Now the parser:
def regexMap (F R: set): set = $ R o> cnv F $;
infixr regexMap: $<@>$ prec 100;
def regexAppL (R S: set) (.x: nat): set = $ (\ x, fst x) <@> (R <+> S) $;
infixl regexAppL: $<+$ prec 77;
def regexAppR (R S: set) (.x: nat): set = $ (\ x, snd x) <@> (R <+> S) $;
infixr regexAppR: $+>$ prec 76;
def parseTk (tk: string): set = $ sn (TK tk <> 0) $;
def parseOptTk (tk: string): set = $ regexOpt (parseTk tk) $;
def parseCh (c: char): set = $ parseTk (s1 c) $;
def _pure: string = $ _p ': _u ': _r ': _e ': s0 $;
def _strict: string = $ _s ': _t ': _r ': _i ': _c ': _t ': s0 $;
def _provable: string = $ _p ': _r ': _o ': _v ': _a ': _b ': _l ': _e ': s0 $;
def _free: string = $ _f ': _r ': _e ': _e ': s0 $;
def parseSortData: set =
$ (parseOptTk _pure <+> parseOptTk _strict) <+>
(parseOptTk _provable <+> parseOptTk _free) $;
def parseIdent_ (.s: nat): set = $ (\ s, TK s <> s) '' regexIdent $;
def parseIdent (.x: nat): set = $ parseIdent_ i^i {x | snd x != s1 _under} $;
def ASTSort (x: nat): nat = $ b0 (b0 (b0 x)) $;
def ASTTerm (x: nat): nat = $ b0 (b0 (b1 x)) $;
def ASTAxiom (x: nat): nat = $ b0 (b1 (b0 x)) $;
def ASTDef (x: nat): nat = $ b0 (b1 (b1 x)) $;
def ASTThm (x: nat): nat = $ b1 (b0 (b0 x)) $;
def ASTIO (out x: nat): nat = $ b1 (b0 (b1 (out <> x))) $;
def ASTNota (x: nat): nat = $ b1 (b1 x) $;
def _sort: string = $ _s ': _o ': _r ': _t ': s0 $;
def parseSort (.x: nat): set = $ (\ x, ASTSort x) <@>
(parseSortData <+> parseTk _sort +> parseIdent <+ parseCh _semi) $;
def parseType (.x: nat): set = $ (\ x, b0 x) <@>
(parseIdent <+> regexStar parseIdent) $;
def parseFmla (.s: nat): set = $ Ran (\ s, MATH s <> b1 s) $;
def parseTypeFmla: set = $ parseType u. parseFmla $;
def parseDummyId (.x: nat): set =
$ (\ x, b0 x) <@> parseIdent_ u.
(\ x, b1 x) <@> (parseCh _dot +> parseIdent) $;
-- This throws all binders into a common parsed representation.
-- {x: set} goes to (0, b0 "x", b0 ("set", []))
-- (x: set) goes to (1, b0 "x", b0 ("set", []))
-- (x: set y) goes to (1, b0 "x", b0 ("set", ["y"]))
-- (x: $foo$) goes to (1, b0 "x", b1 "foo")
-- (_: $foo$) goes to (1, b0 "_", b1 "foo")
-- (.x: set) goes to (1, b1 "x", b0 ("set", []))
def parseCurlyBinder (.x .z: nat): set =
$ (\ z, map (\ x, 0 <> x <> snd z) (fst z)) <@>
(parseCh _lbrace +> regexStar parseDummyId <+>
parseCh _colon +> parseTypeFmla <+ parseCh _rbrace) $;
def parseRegBinder (.x .z: nat): set =
$ (\ z, map (\ x, 1 <> x <> snd z) (fst z)) <@>
(parseCh _lparen +> regexStar parseDummyId <+>
parseCh _colon +> parseTypeFmla <+ parseCh _rparen) $;
def parseBinder (.x .y: nat): set = $ parseCurlyBinder u. parseRegBinder $;
def parseBinders (.x .z: nat): set =
$ (\ x, ljoin x) <@> regexStar parseBinder $;
def parseArrows: set =
$ regexStar (parseTypeFmla <+ parseCh _gt) <+> parseTypeFmla $;
def parseBindersAndArrows (.x .z: nat): set =
$ (\ x, (fst x ++ map (\ z, (1 <> b0 (s1 _under) <> z)) (pi21 x)) <> pi22 x) <@>
(parseBinders <+> parseCh _colon +> parseArrows) $;
def parseSimple (tk: string): set =
$ parseTk tk +> parseIdent <+> parseBindersAndArrows <+ parseCh _semi $;
def _term: string = $ _t ': _e ': _r ': _m ': s0 $;
def parseTerm (.x: nat): set = $ (\ x, ASTTerm x) <@> parseSimple _term $;
def _axiom: string = $ _a ': _x ': _i ': _o ': _m ': s0 $;
def parseAxiom (.x: nat): set = $ (\ x, ASTAxiom x) <@> parseSimple _axiom $;
def _theorem: string = $ _t ': _h ': _e ': _o ': _r ': _e ': _m ': s0 $;
def parseThm (.x: nat): set = $ (\ x, ASTThm x) <@> parseSimple _theorem $;
def _def: string = $ _d ': _e ': _f ': s0 $;
def parseDef (.x: nat): set = $ (\ x, ASTDef x) <@>
(parseTk _theorem +> parseIdent <+> parseBinders <+>
parseCh _colon +> parseType <+>
regexOpt (parseCh _equal +> parseFmla) <+ parseCh _semi) $;
def NotaDelim (x: nat): nat = $ b0 (b0 x) $;
def NotaInfix (x y: nat): nat = $ b0 (b1 (b0 (x <> y))) $;
def NotaPfx (x: nat): nat = $ b0 (b1 (b1 x)) $;
def NotaCoe (x: nat): nat = $ b1 (b0 x) $;
def NotaGen (x: nat): nat = $ b1 (b1 x) $;
def _delimiter: string =
$ _d ': _e ': _l ': _i ': _m ': _i ': _t ': _e ': _r ': s0 $;
def parseDelim (.x: nat): set = $ (\ x, NotaDelim x) <@>
(parseTk _delimiter +>
(((\ x, x <> x) <@> parseFmla) u.
(parseFmla <+> parseFmla)) <+ parseCh _semi) $;
def stoi (x: nat): nat;
theorem stoi0: $ stoi 0 = 0 $;
theorem stoiS (s x: nat): $ stoi (s |> x) = stoi s * 10 + (x - _0) $;
def parseNumber (.s: nat): set = $ (\ s, TK s <> stoi s) '' isNumber $;
def _max: string = $ _m ': _a ': _x ': s0 $;
def parsePrec (.x: nat): set = $ parseTk _max u. (\ x, suc x) <@> parseNumber $;
def _prec: string = $ _p ': _r ': _e ': _c ': s0 $;
def parseSimpleNota (tk: string): set =
$ parseTk tk +> parseIdent <+> parseCh _colon +> parseFmla <+>
parseTk _prec +> parsePrec <+ parseCh _semi $;
def _infixl: string = $ _i ': _n ': _f ': _i ': _x ': _l ': s0 $;
def _infixr: string = $ _i ': _n ': _f ': _i ': _x ': _r ': s0 $;
def _prefix: string = $ _p ': _r ': _e ': _f ': _i ': _x ': s0 $;
def parseInfixl (.x: nat): set = $ (\ x, NotaInfix 0 x) <@> parseSimpleNota _infixl $;
def parseInfixr (.x: nat): set = $ (\ x, NotaInfix 1 x) <@> parseSimpleNota _infixr $;
def parsePfx (.x: nat): set = $ (\ x, NotaPfx x) <@> parseSimpleNota _prefix $;
def _coercion: string = $ _c ': _o ': _e ': _r ': _c ': _i ': _o ': _n ': s0 $;
def parseCoe (.x: nat): set = $ (\ x, NotaCoe x) <@>
(parseTk _coercion +> parseIdent <+>
parseCh _colon +> parseIdent <+>
parseCh _gt +> parseIdent <+> parseCh _semi) $;
def parseLiteral (.x: nat): set =
$ ((\ x, b0 x) <@> (parseCh _lparen +> parseFmla <+>
parseCh _colon +> parsePrec <+ parseCh _rparen)) u.
((\ x, b1 x) <@> parseIdent) $;
def _notation: string = $ _n ': _o ': _t ': _a ': _t ': _i ': _o ': _n ': s0 $;
def parseGenNota (.x: nat): set = $ (\ x, NotaCoe x) <@>
(parseTk _notation +> parseIdent <+>
parseBinders <+> parseCh _colon +> parseType <+>
parseCh _equal +> regexPlus parseLiteral <+ parseCh _semi) $;
def parseNota (.x: nat): set = $ (\ x, ASTNota x) <@>
(parseDelim u. parseInfixl u. parseInfixr u. parsePfx u.
parseCoe u. parseGenNota) $;
def _input: string = $ _i ': _n ': _p ': _u ': _t ': s0 $;
def _output: string = $ _o ': _u ': _t ': _p ': _u ': _t ': s0 $;
def inputKinds: nat = $0$;
def outputKinds: nat = $0$;
def parseIO1 (tk: string) (k .x .s: nat): set =
$ parseTk tk +> (parseIdent i^i {x | snd x e. k}) <+>
parseCh _colon +>
regexStar (((\ s, TK s) <@> parseIdent) u. Ran (\ s, MATH s <> MATH s))
<+ parseCh _semi $;
def parseIO (.x: nat): set =
$ ((\ x, ASTIO 0 x) <@> parseIO1 _input inputKinds) u.
((\ x, ASTIO 1 x) <@> parseIO1 _output outputKinds) $;
def parseAST: set =
$ regexStar (parseSort u. parseTerm u. parseAxiom u.
parseThm u. parseDef u. parseNota u. parseIO) $;
def parse (s ast .tks: nat): wff =
$ E. tks (Tokenize s = suc tks /\ tks <> ast e. parseAST) $;
--------------------
-- AST Navigation --
--------------------
def lookupVar (ctx x: nat): nat;
theorem lookupVar0 (x: nat): $ lookupVar 0 x = 0 $;
theorem lookupVarEq (bis c x t: nat):
$ lookupVar (bis |> (c <> x <> t)) x = suc (len bis) $;
theorem lookupVarNe (bis c x y t: nat): $ y != x ->
lookupVar (bis |> (c <> x <> t)) y = lookupVar bis y $;
------------------
-- Math Parsing --
------------------
def nonemptyNonwhite (.s .c: nat): set =
$ {s | s != 0 /\ all {c | ~c e. white} s} $;
def simpleTokenize (s: nat): nat;
theorem simpleTokenize0: $ simpleTokenize 0 = 0 $;
theorem simpleTokenizeWS (c s: nat):
$ c e. white -> simpleTokenize (c : s) = simpleTokenize s $;
theorem simpleTokenizeTk (s x r: nat):
$ maxPrefix nonemptyNonwhite s = suc (x <> r) ->
simpleTokenize s = x : simpleTokenize r $;
def getDelimiters (ast: nat): nat;
theorem getDelimiters0: $ getDelimiters 0 = 0 <> 0 $;
theorem getDelimitersDelim (ast a b l r: nat):
$ getDelimiters ast = a <> b ->
getDelimiters (ast |> ASTNota (NotaDelim (b1 l <> b1 r))) =
lower (a u. lmems (simpleTokenize l)) <>
lower (b u. lmems (simpleTokenize r)) $;
theorem getDelimitersOther {l r: nat} (ast t: nat):
$ ~(E. l E. r t = ASTNota (NotaDelim (b1 l <> b1 r))) ->
getDelimiters (ast |> t) = getDelimiters ast $;
def delimitersOk (A: set) (.x .y: nat): wff =
$ A. x (x e. A -> len x = 1) $;
def tokenizeFmla (ast f: nat): nat;
theorem tokenizeFmla0 (ast: nat): $ tokenizeFmla ast 0 = 0 $;
theorem tokenizeFmlaWhite (ast x xs: nat): $ x e. white ->
tokenizeFmla ast (x : xs) = tokenizeFmla ast xs $;
theorem tokenizeFmla1 (ast x: nat): $ ~x e. white ->
tokenizeFmla ast (x : 0) = (x : 0) : 0 $;
theorem tokenizeFmlaSLDelim (ast x xs: nat):
$ x : 0 e. fst (getDelimiters ast) ->
tokenizeFmla ast (x : xs) = (x : 0) : tokenizeFmla ast xs $;
theorem tokenizeFmlaSRDelim (ast x y xs: nat):
$ ~x e. white /\ y : 0 e. snd (getDelimiters ast) ->
tokenizeFmla ast (x : y : xs) = (x : 0) : tokenizeFmla ast (y : xs) $;
theorem tokenizeFmlaSElse (ast x y xs r r2: nat):
$ ~x e. white /\
tokenizeFmla ast (y : xs) = (y : r) : r2 /\
~x : 0 e. fst (getDelimiters ast) /\
~y : 0 e. snd (getDelimiters ast) ->
tokenizeFmla ast (x : y : xs) = (x : y : r) : r2 $;
-- the below non-free recursive definition is harder to work with so
-- we will stick to the obvious one unless we need these theorems
-- theorem tokenizeFmlaWS (ast s c t: nat): $ c e. white ->
-- tokenizeFmla ast (s ++ c : t) = tokenizeFmla ast s ++ tokenizeFmla ast t $;
-- theorem tokenizeFmlaLDelim (ast x s t: nat):
-- $ x e. fst (getDelimiters ast) ->
-- tokenizeFmla ast (s ++ x ++ t) =
-- tokenizeFmla ast (s ++ x) ++ tokenizeFmla ast t $;
-- theorem tokenizeFmlaRDelim (ast x s t: nat):
-- $ x e. snd (getDelimiters ast) ->
-- tokenizeFmla ast (s ++ x ++ t) =
-- tokenizeFmla ast s ++ tokenizeFmla ast (x ++ t) $;
-- theorem tokenizeFmlaJoin (ast x s t: nat):
-- $ s e. nonemptyNonwhite -> ljoin (tokenizeFmla ast s) = s $;
-- theorem tokenizeFmlaMinimal {l r: nat} (ast s a x y b: nat):
-- $ tokenizeFmla ast s = a ++ x : y : b ->
-- E. l E. r (r e. fst (getDelimiters ast) /\ x = l ++ r) \/
-- E. l E. r (l e. snd (getDelimiters ast) /\ y = l ++ r) $;
def getPfx (ast: nat): nat;
theorem getPfxEl {fmla: nat} (ast x c p: nat):
$ x <> c <> p e. getPfx ast <-> E. fmla
(ASTNota (NotaPfx (x <> b1 fmla <> p)) IN ast /\
simpleTokenize fmla = c : 0) $;
def getInfix (ast r: nat): nat;
theorem getInfixEl {fmla: nat} (ast r x c p: nat):
$ x <> c <> p e. getInfix ast r <-> E. fmla
(ASTNota (NotaInfix r (x <> b1 fmla <> p)) IN ast /\
simpleTokenize fmla = c : 0) $;
def getNota (ast: nat): nat;
theorem getNotaEl (ast x y: nat):
$ x <> y e. getNota ast <-> ASTNota (NotaGen (x <> y)) IN ast $;
def getCoe (ast: nat): nat;
theorem getCoeEl (ast x y: nat):
$ x <> y e. getCoe ast <-> ASTNota (NotaCoe (x <> y)) IN ast $;
def precle (m n: nat): wff; infixl precle: $<=p$ prec 50;
theorem precle02 (n: nat): $ n <=p 0 $;
theorem precle01 (m: nat): $ ~ 0 <=p suc m $;
theorem precleS (m n: nat): $ suc m <=p suc n <-> m <= n $;
def precSuc (n: nat): nat;
theorem precSuc0: $ precSuc 0 = 0 $;
theorem precSucS (n: nat): $ precSuc (suc n) = suc (suc n) $;
def litsPrec (lits q: nat): nat;
theorem litsPrec0 (q: nat): $ litsPrec 0 q = q $;
theorem litsPrecC (c p lits q: nat):
$ litsPrec (b0 (c <> p) : lits) q = precSuc p $;
theorem litsPrecV (v lits q: nat):
$ litsPrec (b1 v : lits) q = 0 $;
-- This is a more precise version of SExpr that allows reconstructing an
-- exact token string from a parse proof
def PTVar (v: nat): nat = $ b0 (b0 (b0 v)) $;
def PTParens (x: nat): nat = $ b0 (b0 (b1 x)) $;
def PTFunc (f x: nat): nat = $ b0 (b1 (f <> x)) $;
def PTPfx (f c x: nat): nat = $ b1 (b0 (b0 (f <> c <> x))) $;
def PTNota (f x: nat): nat = $ b1 (b0 (b1 (f <> x))) $;
def PTInfix (r f c x y: nat): nat = $ b1 (b1 (b0 (r <> f <> c <> x <> y))) $;
def PTCoe (f x: nat): nat = $ b1 (b1 (b1 (f <> x))) $;
def ptToStr (pt: nat): nat;
theorem ptToStrVar (v: nat): $ ptToStr (PTVar v) = v : 0 $;
theorem ptToStrParens {s: nat} (e: nat):
$ ptToStr (PTParens e) = s1 _lparen : ptToStr e ++ s1 _rparen : 0 $;
theorem ptToStrFunc {s: nat} (f x: nat): $ ptToStr (PTFunc f x) =
f : ljoin (map (\ s, ptToStr s) x) $;
theorem ptToStrPfx {s: nat} (f c x: nat): $ ptToStr (PTPfx f c x) =
c : ljoin (map (\ s, ptToStr s) x) $;
theorem ptToStrNota {y: nat} (f x: nat):
$ ptToStr (PTNota f x) =
ljoin (map (case (\ y, y : 0) (\ y, ptToStr y)) x) $;
theorem ptToStrInfix (r f c x y: nat):
$ ptToStr (PTInfix r f c x y) = ptToStr x ++ c : ptToStr y $;
theorem ptToStrCoe {y: nat} (f x: nat):
$ ptToStr (PTCoe f x) = ptToStr x $;
def ptCheck (eac p pt e: nat): wff;
def ptCheckNotaLs (eac bis lits xs es p: nat): wff;
theorem ptCheckVar {n: nat} (eac p v e: nat): $ ptCheck eac p (PTVar v) e <->
E. n (lookupVar (pi22 eac) v = suc n /\ e = SVar n) $;
theorem ptCheckParens (eac p pt e: nat):
$ ptCheck eac p (PTParens pt) e <->
ptCheck eac (suc 0) pt e $;
theorem ptCheckFunc (env ast ctx p f xs e: nat) {args r v e2 x y: nat}:
$ ptCheck (env <> ast <> ctx) p (PTFunc f xs) e <->
suc (2 ^ 10) <=p p /\ E. args E. r E. v E. e2
(getTerm env f args r v /\ len xs = len args /\
xs <> e2 e. all2 (S\ x, {y | ptCheck (env <> ast <> ctx) 0 x y}) /\
e = SApp f e2) $;
theorem ptCheckPfx (eac p f c xs e: nat) {l z f2 q es2 e2 x y: nat} :
$ ptCheck eac p (PTPfx f c xs) e <->
E. l E. z E. q E. es2 E. e2 (xs = l |> z /\
f <> c <> q e. getPfx (pi21 eac) /\ q <=p p /\
l <> es2 e. all2 (S\ x, {y | ptCheck eac 0 x y}) /\ ptCheck eac q z e2 /\
e = SApp f (es2 |> e2)) $;
theorem ptCheckNota {bis ty c q lits es n v: nat} (eac p f xs e: nat):
$ ptCheck eac p (PTNota f xs) e <->
E. bis E. ty E. c E. q E. lits E. es (
f <> bis <> ty <> (b0 (c <> q) : lits) e. getNota (pi21 eac) /\
len bis = len es /\
A. n (n < len es -> E. v (b1 v IN lits /\ lookupVar bis v = suc n)) /\
ptCheckNotaLs eac bis lits xs es q /\
e = SApp f es) $;
theorem ptCheckInfix {q e1 e2: nat} (eac p r f c x y e: nat):
$ ptCheck eac p (PTInfix r f c x y) e <->
E. q E. e1 E. e2 (
f <> c <> q e. getInfix (pi21 eac) r /\ q <=p p /\
ptCheck eac (if (true r) (precSuc q) q) x e1 /\
ptCheck eac (if (true r) q (precSuc q)) y e2 /\
e = SApp f (e1 : e2 : 0)) $;
theorem ptCheckCoe {y e2: nat} (eac p f x e: nat):
$ p <= eac ->
(ptCheck eac p (PTCoe f x) e <->
E. y E. e2 (
f <> y e. getCoe (pi21 eac) /\ ptCheck eac p x e2 /\
e = SApp f e2)) $;
theorem ptCheckNotaLs0 (eac bis xs es q: nat):
$ ptCheckNotaLs eac bis 0 xs es q <-> xs = 0 $;
theorem ptCheckNotaLsC {x xs2: nat} (eac bis c p lits xs es q: nat):
$ ptCheckNotaLs eac bis (b0 (c <> p) : lits) xs es q <->
E. xs2 (xs = b0 c : xs2 /\ ptCheckNotaLs eac bis lits xs2 es q) $;
theorem ptCheckNotaLsV {n x e xs2: nat} (eac bis v lits xs es q: nat):
$ litsPrec lits q <= suc eac ->
(ptCheckNotaLs eac bis (b1 v : lits) xs es q <->
E. n E. x E. xs2 E. e (xs = b1 x : xs2 /\
lookupVar bis v = suc n /\ nth n es = suc e /\
ptCheck eac (litsPrec lits q) x e /\
ptCheckNotaLs eac bis lits xs2 es q)) $;
def parseExpr (eac args f s .e .pt: nat): set =
$ {e | E. pt (ptToStr pt = f /\
ptCheck eac 0 pt e /\ Expr (fst eac) args e s)} $;
def parseExprProv (eac args f .e .pt: nat): set =
$ {e | E. pt (ptToStr pt = f /\
ptCheck eac 0 pt e /\ ExprProv (fst eac) args e)} $;
-----------------
-- Elaboration --
-----------------
-- Here we have to convert a parsed AST into an Env, and also
-- parse the math strings.
def splitDummies (bis: nat): nat;
theorem splitDummies0: $ splitDummies 0 = 0 $;
theorem splitDummiesL (bis bis1 bis2 c x t: nat): $
splitDummies bis = bis1 <> bis2 ->
splitDummies (bis |> (c <> b0 x <> t)) =
(bis1 |> (c <> x <> t)) <> bis2 $;
theorem splitDummiesR (bis bis1 bis2 c x t: nat): $
splitDummies bis = bis1 <> bis2 ->
splitDummies (bis |> (c <> b1 x <> t)) = bis1 <> (bis2 |> (x <> t)) $;
def checkDummies (ds bis: nat): wff;
theorem checkDummies0 (bis: nat): $ checkDummies 0 bis <-> bis = 0 $;
theorem checkDummiesS {t2 bis2: nat} (bis x t ds: nat):
$ checkDummies ((x <> t) : ds) bis <-> E. t2 E. bis2 (
t = b0 (t2 <> 0) /\ checkDummies ds bis2 /\
bis = (0 <> x <> t) : bis2) $;
def lookupVars (ctx .s .t: nat): set = $ S\ s, {t | lookupVar ctx s = suc t} $;
def elabType (ast ctx s out .t .vs .vs2: nat): wff =
$ E. t E. vs E. vs2 (s = b0 (t <> vs) /\ out = t <> vs2 /\
vs2 == lookupVars ctx '' vs) $;
def elabTermBinder (ast ctx bi s: nat): wff;
theorem elabTermBinderFmla (ast ctx c x f s: nat):
$ ~ elabTermBinder ast ctx (c <> x <> b1 f) s $;
theorem elabTermBinderBound {t2: nat} (ast ctx bi x t s: nat):
$ elabTermBinder ast ctx (0 <> x <> b0 t) s <->
E. t2 (elabType ast ctx t (t2 <> 0) /\ s = PBound t2) $;
theorem elabTermBinderReg {t2 vs2: nat} (ast ctx bi x t s: nat):
$ elabTermBinder ast ctx (1 <> x <> b0 t) s <->
E. t2 E. vs2 (elabType ast ctx t (t2 <> vs2) /\ s = PReg t2 vs2) $;
def elabTermBinders (ast ctx ctx2: nat): wff;
theorem elabTermBinders0 (ast ctx2: nat):
$ elabTermBinders ast 0 ctx2 <-> ctx2 = 0 $;
theorem elabTermBindersS {ctx2 bi2: nat} (ast ctx bi ctx3: nat):
$ elabTermBinders ast (ctx |> bi) ctx3 <->