-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy patheval.py
40 lines (33 loc) · 1.86 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import argparse
import functools
import time
from ppyoloe.trainer import PPYOLOETrainer
from ppyoloe.utils.utils import add_arguments, print_arguments
from ppyoloe.utils.utils import setup_logger
logger = setup_logger(__name__)
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('model_type', str, 'M', '所使用PPYOLOE的模型类型', choices=["X", "L", "M", "S"])
add_arg('use_gpu', bool, True, '是否使用GPU')
add_arg('batch_size', int, 8, '训练的批量大小')
add_arg('num_workers', int, 4, '读取数据的线程数量')
add_arg('num_classes', int, 80, '分类的类别数量')
add_arg('image_size', str, '640,640', '评估时图像输入大小')
add_arg('image_dir', str, 'dataset/', '图片存放的路径')
add_arg('eval_anno_path', str, 'dataset/eval.json', '评估标注信息json文件路径')
add_arg('resume_model', str, 'models/PPYOLOE_M/best_model', '恢复模型文件夹路径')
args = parser.parse_args()
print_arguments(args)
# 获取训练器
trainer = PPYOLOETrainer(model_type=args.model_type,
batch_size=args.batch_size,
num_workers=args.num_workers,
num_classes=args.num_classes,
image_dir=args.image_dir,
eval_anno_path=args.eval_anno_path,
use_gpu=args.use_gpu)
# 开始评估
start = time.time()
mAP = trainer.evaluate(image_size=args.image_size, resume_model=args.resume_model)[0]
end = time.time()
print('评估消耗时间:{}s,mAP:{:.5f}'.format(int(end - start), mAP))