-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathinfer_onnx.py
42 lines (36 loc) · 1.83 KB
/
infer_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import argparse
import functools
import cv2
import numpy as np
from PIL import ImageFont
from ppyoloe.onnx_predict import PPYOLOEONNXPredictor
from ppyoloe.utils.utils import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('use_gpu', bool, True, '是否使用GPU进行预测')
add_arg('use_tensorrt', bool, False, '是否使用TensorRT加速')
add_arg('image_path', str, 'dataset/test.jpg', '预测的图片路径')
add_arg('image_shape', str, '640,640', '导出模型图像输入大小')
add_arg('onnx_model', str, 'models/PPYOLOE_M/model.onnx', 'ONNX模型文件夹路径')
add_arg('labels_list_path', str, 'dataset/label_list.txt', '数据标签列表文件路径')
args = parser.parse_args()
print_arguments(args)
def main():
image_shape = [int(s) for s in args.image_shape.split(',')]
# 字体的格式
font_style = ImageFont.truetype("utils/simsun.ttc", 14, encoding="utf-8")
predictor = PPYOLOEONNXPredictor(model_path=args.onnx_model,
labels_list_path=args.labels_list_path,
use_gpu=args.use_gpu,
use_tensorrt=args.use_tensorrt,
height=image_shape[0],
width=image_shape[1])
image = cv2.imdecode(np.fromfile(args.image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
result = predictor.infer(image)
print('识别结果:', result)
img = predictor.draw_box(image, results=result, font_style=font_style)
# 显示图像
cv2.imshow('result', img)
cv2.waitKey(0)
if __name__ == "__main__":
main()