-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathvoc2coco.py
140 lines (120 loc) · 4.93 KB
/
voc2coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import argparse
import json
import os
import xml.etree.ElementTree as ET
from tqdm import tqdm
def voc_get_label_anno(dataset_path, voc_anno_list, labels_path, use_mainbody=True):
if use_mainbody:
labels_str = ['foreground']
with open(labels_path, 'w', encoding='utf-8') as f:
f.write('foreground')
else:
with open(labels_path, 'r', encoding='utf-8') as f:
labels_str = f.read().split()
labels_ids = list(range(1, len(labels_str) + 1))
with open(voc_anno_list, 'r', encoding='utf-8') as f:
lines = f.readlines()
ann_img_paths = []
for line in lines:
i_path, a_path = line.strip('\n').split(' ')
ann_img_paths.append([os.path.join(dataset_path, a_path), i_path])
return dict(zip(labels_str, labels_ids)), ann_img_paths
def voc_get_image_info(annotation_root, im_id, filename):
size = annotation_root.find('size')
width = float(size.findtext('width'))
height = float(size.findtext('height'))
image_info = {
'file_name': filename,
'height': height,
'width': width,
'id': im_id
}
return image_info
def voc_get_coco_annotation(obj, label2id, use_mainbody=True):
label = obj.findtext('name')
if not use_mainbody:
assert label in label2id, f"{label} is not in label2id."
category_id = label2id[label]
else:
category_id = 1
bndbox = obj.find('bndbox')
xmin = float(bndbox.findtext('xmin'))
ymin = float(bndbox.findtext('ymin'))
xmax = float(bndbox.findtext('xmax'))
ymax = float(bndbox.findtext('ymax'))
assert xmax > xmin and ymax > ymin, f"Box size error, {xmin}, {ymin}, {xmax}, {ymax}"
o_width = xmax - xmin
o_height = ymax - ymin
anno = {'area': o_width * o_height,
'iscrowd': 0,
'bbox': [xmin, ymin, o_width, o_height],
'category_id': category_id,
'ignore': 0,
}
return anno
def voc_xmls_to_cocojson(annotation_paths, label2id, voc_anno_list, use_mainbody=True):
output_json_dict = {
"images": [],
"type": "instances",
"annotations": [],
"categories": []
}
bnd_id = 1 # bounding box start id
im_id = 0
print('Start converting !')
for a_path, i_path in tqdm(annotation_paths):
# Read annotation xml
ann_tree = ET.parse(a_path)
ann_root = ann_tree.getroot()
try:
for obj in ann_root.findall('object'):
ann = voc_get_coco_annotation(obj=obj, label2id=label2id, use_mainbody=use_mainbody)
if ann == '':continue
ann.update({'image_id': im_id, 'id': bnd_id})
output_json_dict['annotations'].append(ann)
bnd_id = bnd_id + 1
except Exception as e:
print(a_path, e)
continue
img_info = voc_get_image_info(ann_root, im_id, i_path)
output_json_dict['images'].append(img_info)
im_id += 1
for label, label_id in label2id.items():
category_info = {'supercategory': 'none', 'id': label_id, 'name': label}
output_json_dict['categories'].append(category_info)
with open(voc_anno_list.replace('txt', 'json'), 'w') as f:
output_json = json.dumps(output_json_dict)
f.write(output_json)
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset_path',
type=str,
default='dataset/',
help='VOC的数据保存路径')
parser.add_argument('--voc_label_list',
type=str,
default='dataset/label_list.txt',
help='VOC数据的类别标签')
parser.add_argument('--use_mainbody',
type=bool,
default=False,
help='是否导出主体检测数据,如果是则全部类别变成foreground')
args = parser.parse_args()
# 转换训练数据
args.voc_anno_list = 'dataset/train.txt'
label2id, ann_paths = voc_get_label_anno(args.dataset_path, args.voc_anno_list, args.voc_label_list,
use_mainbody=args.use_mainbody)
voc_xmls_to_cocojson(annotation_paths=ann_paths,
label2id=label2id,
voc_anno_list=args.voc_anno_list,
use_mainbody=args.use_mainbody)
# 转换评估数据
args.voc_anno_list = 'dataset/eval.txt'
label2id, ann_paths = voc_get_label_anno(args.dataset_path, args.voc_anno_list, args.voc_label_list,
use_mainbody=args.use_mainbody)
voc_xmls_to_cocojson(annotation_paths=ann_paths,
label2id=label2id,
voc_anno_list=args.voc_anno_list,
use_mainbody=args.use_mainbody)
if __name__ == '__main__':
main()