-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy patheval_det.py
473 lines (411 loc) · 16.7 KB
/
eval_det.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
""" Generic Code for Object Detection Evaluation
Input:
For each class:
For each image:
Predictions: box, score
Groundtruths: box
Output:
For each class:
precision-recal and average precision
Author: Charles R. Qi
Ref: https://raw.githubusercontent.com/rbgirshick/py-faster-rcnn/master/lib/datasets/voc_eval.py
"""
from multiprocessing import Pool
from net_utils.box_util import box3d_iou
import numpy as np
from net_utils.metric_util import calc_iou # axis-aligned 3D box IoU
def compute_mesh_iou(voxel1, voxel2):
voxel1_internal, voxel1_surface = voxel1
voxel2_internal, voxel2_surface = voxel2
if voxel1_surface.filled_count ==0 or voxel2_surface.filled_count == 0:
return 0.
# (Note: internal voxels would be empty)
if voxel1_internal.filled_count > 0 and voxel2_internal.filled_count > 0:
v1_internal_points = voxel1_internal.points
# v1 surface points that are not belong to internal.
v1_surface_points = voxel1_surface.points[voxel1_internal.is_filled(voxel1_surface.points) == False]
v1_points = np.vstack([v1_internal_points, v1_surface_points])
v2_internal_points = voxel2_internal.points
# v2 surface points that are not belong to internal.
v2_surface_points = voxel2_surface.points[voxel2_internal.is_filled(voxel2_surface.points) == False]
v2_points = np.vstack([v2_internal_points, v2_surface_points])
v1_in_v2 = sum(voxel2_surface.is_filled(v1_points) + voxel2_internal.is_filled(v1_points))
v2_in_v1 = sum(voxel1_surface.is_filled(v2_points) + voxel1_internal.is_filled(v2_points))
elif voxel1_internal.filled_count == 0 and voxel2_internal.filled_count > 0:
v1_points = voxel1_surface.points
v2_internal_points = voxel2_internal.points
# v2 surface points that are not belong to internal.
v2_surface_points = voxel2_surface.points[voxel2_internal.is_filled(voxel2_surface.points) == False]
v2_points = np.vstack([v2_internal_points, v2_surface_points])
v1_in_v2 = sum(voxel2_surface.is_filled(v1_points) + voxel2_internal.is_filled(v1_points))
v2_in_v1 = sum(voxel1_surface.is_filled(v2_points))
elif voxel1_internal.filled_count > 0 and voxel2_internal.filled_count == 0:
v2_points = voxel2_surface.points
v1_internal_points = voxel1_internal.points
# v1 surface points that are not belong to internal.
v1_surface_points = voxel1_surface.points[voxel1_internal.is_filled(voxel1_surface.points) == False]
v1_points = np.vstack([v1_internal_points, v1_surface_points])
v1_in_v2 = sum(voxel2_surface.is_filled(v1_points))
v2_in_v1 = sum(voxel1_surface.is_filled(v2_points) + voxel1_internal.is_filled(v2_points))
else:
v1_points = voxel1_surface.points
v2_points = voxel2_surface.points
v1_in_v2 = sum(voxel2_surface.is_filled(v1_points))
v2_in_v1 = sum(voxel1_surface.is_filled(v2_points))
if v1_in_v2 == 0 or v2_in_v1 == 0:
return 0.
alpha1 = v1_in_v2 / v1_points.shape[0]
alpha2 = v2_in_v1 / v2_points.shape[0]
return (alpha1 * alpha2) / (alpha1 + alpha2 - alpha1 * alpha2)
def get_iou_obb(bb1,bb2):
iou3d, iou2d = box3d_iou(bb1,bb2)
return iou3d
def get_iou_main(get_iou_func, args):
return get_iou_func(*args)
def voc_ap(rec, prec, use_07_metric=False):
""" ap = voc_ap(rec, prec, [use_07_metric])
Compute VOC AP given precision and recall.
If use_07_metric is true, uses the
VOC 07 11 point method (default:False).
"""
if use_07_metric:
# 11 point metric
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
else:
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def get_iou(bb1, bb2):
""" Compute IoU of two bounding boxes.
** Define your bod IoU function HERE **
"""
#pass
iou3d = calc_iou(bb1, bb2)
return iou3d
def eval_det_cls_w_mesh(pred, gt, ovthresh=0.25, use_07_metric=False, get_iou_func=get_iou, get_iou_mesh=compute_mesh_iou):
""" Generic functions to compute precision/recall for object detection
for a single class.
Input:
pred: map of {img_id: [(bbox, score)]} where bbox is numpy array
gt: map of {img_id: [bbox]}
ovthresh: scalar, iou threshold
use_07_metric: bool, if True use VOC07 11 point method
Output:
rec: numpy array of length nd
prec: numpy array of length nd
ap: scalar, average precision
"""
# construct gt objects
class_recs = {} # {img_id: {'bbox': bbox list, 'det': matched list}}
npos = 0
for img_id in gt.keys():
bbox = np.array([item[0] for item in gt[img_id]])
mesh = [item[1] for item in gt[img_id]]
det = [False] * len(bbox)
det_mesh = [False] * len(bbox)
npos += len(bbox)
class_recs[img_id] = {'bbox': bbox, 'det': det, 'mesh':mesh, 'det_mesh': det_mesh}
# pad empty list to all other imgids
for img_id in pred.keys():
if img_id not in gt:
class_recs[img_id] = {'bbox': np.array([]), 'det': [], 'mesh':[], 'det_mesh': []}
# construct dets
image_ids = []
confidence = []
BB = []
meshes = []
for img_id in pred.keys():
for box,score,mesh in pred[img_id]:
image_ids.append(img_id)
confidence.append(score)
BB.append(box)
meshes.append(mesh)
confidence = np.array(confidence)
BB = np.array(BB) # (nd,4 or 8,3 or 6)
# sort by confidence
sorted_ind = np.argsort(-confidence)
sorted_scores = np.sort(-confidence)
BB = BB[sorted_ind, ...]
meshes = [meshes[x] for x in sorted_ind]
image_ids = [image_ids[x] for x in sorted_ind]
# go down dets and mark TPs and FPs
nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
tp_mesh = np.zeros(nd)
fp_mesh = np.zeros(nd)
for d in range(nd):
if d%100==0: print(d)
R = class_recs[image_ids[d]]
bb = BB[d,...].astype(float)
mesh_pred = meshes[d]
ovmax = -np.inf
ovmax_mesh = -np.inf
BBGT = R['bbox'].astype(float)
MESH_GT = R['mesh']
if BBGT.size > 0:
# compute overlaps
for j in range(BBGT.shape[0]):
iou = get_iou_main(get_iou_func, (bb, BBGT[j,...]))
if iou > ovmax:
ovmax = iou
jmax = j
iou_mesh = get_iou_main(get_iou_mesh, (mesh_pred, MESH_GT[j]))
if iou_mesh > ovmax_mesh:
ovmax_mesh = iou_mesh
jmax_mesh = j
# jmax_mesh = jmax
# ovmax_mesh = get_iou_main(get_iou_mesh, (mesh_pred, MESH_GT[jmax_mesh]))
#print d, ovmax
if ovmax > ovthresh:
if not R['det'][jmax]:
tp[d] = 1.
R['det'][jmax] = 1
else:
fp[d] = 1.
else:
fp[d] = 1.
#print d, ovmax for mesh
if ovmax_mesh > ovthresh:
if not R['det_mesh'][jmax_mesh]:
tp_mesh[d] = 1.
R['det_mesh'][jmax_mesh] = 1
else:
fp_mesh[d] = 1.
else:
fp_mesh[d] = 1.
# compute precision recall
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / float(npos)
#print('NPOS: ', npos)
# avoid divide by zero in case the first detection matches a difficult
# ground truth
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = voc_ap(rec, prec, use_07_metric)
# for mesh
# compute precision recall
fp_mesh = np.cumsum(fp_mesh)
tp_mesh = np.cumsum(tp_mesh)
rec_mesh = tp_mesh / float(npos)
#print('NPOS: ', npos)
# avoid divide by zero in case the first detection matches a difficult
# ground truth
prec_mesh = tp_mesh / np.maximum(tp_mesh + fp_mesh, np.finfo(np.float64).eps)
ap_mesh = voc_ap(rec_mesh, prec_mesh, use_07_metric)
return (rec, prec, ap), (rec_mesh, prec_mesh, ap_mesh)
def eval_det_cls_wo_mesh(pred, gt, ovthresh=0.25, use_07_metric=False, get_iou_func=get_iou):
""" Generic functions to compute precision/recall for object detection
for a single class.
Input:
pred: map of {img_id: [(bbox, score)]} where bbox is numpy array
gt: map of {img_id: [bbox]}
ovthresh: scalar, iou threshold
use_07_metric: bool, if True use VOC07 11 point method
Output:
rec: numpy array of length nd
prec: numpy array of length nd
ap: scalar, average precision
"""
# construct gt objects
class_recs = {} # {img_id: {'bbox': bbox list, 'det': matched list}}
npos = 0
for img_id in gt.keys():
bbox = np.array(gt[img_id])
det = [False] * len(bbox)
npos += len(bbox)
class_recs[img_id] = {'bbox': bbox, 'det': det}
# pad empty list to all other imgids
for img_id in pred.keys():
if img_id not in gt:
class_recs[img_id] = {'bbox': np.array([]), 'det': []}
# construct dets
image_ids = []
confidence = []
BB = []
for img_id in pred.keys():
for box,score in pred[img_id]:
image_ids.append(img_id)
confidence.append(score)
BB.append(box)
confidence = np.array(confidence)
BB = np.array(BB) # (nd,4 or 8,3 or 6)
# sort by confidence
sorted_ind = np.argsort(-confidence)
sorted_scores = np.sort(-confidence)
BB = BB[sorted_ind, ...]
image_ids = [image_ids[x] for x in sorted_ind]
# go down dets and mark TPs and FPs
nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for d in range(nd):
#if d%100==0: print(d)
R = class_recs[image_ids[d]]
bb = BB[d,...].astype(float)
ovmax = -np.inf
BBGT = R['bbox'].astype(float)
if BBGT.size > 0:
# compute overlaps
for j in range(BBGT.shape[0]):
iou = get_iou_main(get_iou_func, (bb, BBGT[j,...]))
if iou > ovmax:
ovmax = iou
jmax = j
#print d, ovmax
if ovmax > ovthresh:
if not R['det'][jmax]:
tp[d] = 1.
R['det'][jmax] = 1
else:
fp[d] = 1.
else:
fp[d] = 1.
# compute precision recall
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / float(npos)
#print('NPOS: ', npos)
# avoid divide by zero in case the first detection matches a difficult
# ground truth
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = voc_ap(rec, prec, use_07_metric)
return rec, prec, ap
def eval_det_cls_wrapper_w_mesh(arguments):
pred, gt, ovthresh, use_07_metric, get_iou_func, get_iou_mesh = arguments
(rec, prec, ap), (rec_mesh, prec_mesh, ap_mesh) = eval_det_cls_w_mesh(pred, gt, ovthresh, use_07_metric, get_iou_func, get_iou_mesh)
return (rec, prec, ap), (rec_mesh, prec_mesh, ap_mesh)
def eval_det_cls_wrapper_wo_mesh(arguments):
pred, gt, ovthresh, use_07_metric, get_iou_func = arguments
rec, prec, ap = eval_det_cls_wo_mesh(pred, gt, ovthresh, use_07_metric, get_iou_func)
return (rec, prec, ap)
def eval_det_multiprocessing_w_mesh(pred_all, gt_all, ovthresh=0.25, use_07_metric=True, get_iou_func=get_iou, get_iou_mesh=compute_mesh_iou):
""" Generic functions to compute precision/recall for object detection
for multiple classes.
Input:
pred_all: map of {img_id: [(classname, bbox, score)]}
gt_all: map of {img_id: [(classname, bbox)]}
ovthresh: scalar, iou threshold
use_07_metric: bool, if true use VOC07 11 point method
Output:
rec: {classname: rec}
prec: {classname: prec_all}
ap: {classname: scalar}
"""
pred = {} # map {classname: pred}
gt = {} # map {classname: gt}
for img_id in pred_all.keys():
for classname, bbox, score, mesh in pred_all[img_id]:
if classname not in pred: pred[classname] = {}
if img_id not in pred[classname]:
pred[classname][img_id] = []
if classname not in gt: gt[classname] = {}
if img_id not in gt[classname]:
gt[classname][img_id] = []
pred[classname][img_id].append((bbox, score, mesh))
for img_id in gt_all.keys():
for classname, bbox, mesh in gt_all[img_id]:
if classname not in gt: gt[classname] = {}
if img_id not in gt[classname]:
gt[classname][img_id] = []
gt[classname][img_id].append((bbox, mesh))
rec = {}
prec = {}
ap = {}
rec_mesh = {}
prec_mesh = {}
ap_mesh = {}
try:
p = Pool(processes=8)
ret_values = p.map(eval_det_cls_wrapper_w_mesh,
[(pred[classname], gt[classname], ovthresh, use_07_metric, get_iou_func, get_iou_mesh) for classname in
gt.keys() if classname in pred])
p.close()
p.join()
except:
ret_values = []
for classname in gt.keys():
if classname not in pred:
continue
ret_value = eval_det_cls_wrapper_w_mesh((pred[classname], gt[classname], ovthresh, use_07_metric, get_iou_func, get_iou_mesh))
ret_values.append(ret_value)
for i, classname in enumerate(gt.keys()):
if classname in pred:
(rec[classname], prec[classname], ap[classname]), (rec_mesh[classname], prec_mesh[classname], ap_mesh[classname]) = ret_values[i]
else:
rec[classname] = 0
prec[classname] = 0
ap[classname] = 0
rec_mesh[classname] = 0
prec_mesh[classname] = 0
ap_mesh[classname] = 0
print(classname, 'box', ap[classname])
print(classname, 'mesh', ap_mesh[classname])
return (rec, prec, ap), (rec_mesh, prec_mesh, ap_mesh)
def eval_det_multiprocessing_wo_mesh(pred_all, gt_all, ovthresh=0.25, use_07_metric=False, get_iou_func=get_iou):
""" Generic functions to compute precision/recall for object detection
for multiple classes.
Input:
pred_all: map of {img_id: [(classname, bbox, score)]}
gt_all: map of {img_id: [(classname, bbox)]}
ovthresh: scalar, iou threshold
use_07_metric: bool, if true use VOC07 11 point method
Output:
rec: {classname: rec}
prec: {classname: prec_all}
ap: {classname: scalar}
"""
pred = {} # map {classname: pred}
gt = {} # map {classname: gt}
for img_id in pred_all.keys():
for classname, bbox, score in pred_all[img_id]:
if classname not in pred: pred[classname] = {}
if img_id not in pred[classname]:
pred[classname][img_id] = []
if classname not in gt: gt[classname] = {}
if img_id not in gt[classname]:
gt[classname][img_id] = []
pred[classname][img_id].append((bbox, score))
for img_id in gt_all.keys():
for classname, bbox in gt_all[img_id]:
if classname not in gt: gt[classname] = {}
if img_id not in gt[classname]:
gt[classname][img_id] = []
gt[classname][img_id].append(bbox)
rec = {}
prec = {}
ap = {}
p = Pool(processes=10)
ret_values = p.map(eval_det_cls_wrapper_wo_mesh,
[(pred[classname], gt[classname], ovthresh, use_07_metric, get_iou_func) for classname in
gt.keys() if classname in pred])
p.close()
p.join()
for i, classname in enumerate(gt.keys()):
if classname in pred:
rec[classname], prec[classname], ap[classname] = ret_values[i]
else:
rec[classname] = 0
prec[classname] = 0
ap[classname] = 0
print(classname, ap[classname])
return rec, prec, ap