forked from xinmei9322/adversarial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
show_samples_cifar_conv_paper.py
44 lines (36 loc) · 1.29 KB
/
show_samples_cifar_conv_paper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from pylearn2.utils import serial
import sys
_, model_path = sys.argv
model = serial.load(model_path)
space = model.generator.get_output_space()
from pylearn2.config import yaml_parse
from pylearn2.gui.patch_viewer import PatchViewer
import numpy as np
dataset = yaml_parse.load(model.dataset_yaml_src)
grid_shape = None
rows = 4
sample_cols = 5
# For some reason format_as from VectorSpace is not working right
topo_samples = model.generator.sample(rows * sample_cols).eval()
samples = dataset.get_design_matrix(topo_samples)
dataset.axes = ['b', 0, 1, 'c']
dataset.view_converter.axes = ['b', 0, 1, 'c']
topo_samples = dataset.get_topological_view(samples)
pv = PatchViewer(grid_shape=(rows, sample_cols + 1), patch_shape=(32,32),
is_color=True)
scale = np.abs(samples).max()
X = dataset.X
topo = dataset.get_topological_view()
index = 0
for i in xrange(samples.shape[0]):
topo_sample = topo_samples[i, :, :, :]
print topo_sample.min(), topo_sample.max()
pv.add_patch(topo_sample / scale, rescale=False)
if (i +1) % sample_cols == 0:
sample = samples[i, :]
dists = np.square(X - sample).sum(axis=1)
j = np.argmin(dists)
match = topo[j, :]
print match.min(), match.max()
pv.add_patch(match / scale, rescale=False, activation=1)
pv.show()