forked from dpkingma/nips14-ssl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gpulearn_yz_x.py
365 lines (293 loc) · 13.7 KB
/
gpulearn_yz_x.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import sys
import os, numpy as np
import scipy.stats
import anglepy.paramgraphics as paramgraphics
import anglepy.ndict as ndict
import matplotlib.pyplot as plt
import Image
import math
import theano
import theano.tensor as T
from collections import OrderedDict
import preprocessing as pp
def main(n_z, n_hidden, dataset, seed, gfx=True, _size=None):
'''Learn a variational auto-encoder with generative model p(x,y,z)=p(y)p(z)p(x|y,z).
x and y are (always) observed.
I.e. this cannot be used for semi-supervised learning
'''
assert (type(n_hidden) == tuple or type(n_hidden) == list)
assert type(n_z) == int
assert isinstance(dataset, basestring)
print 'gpulearn_yz_x', n_z, n_hidden, dataset, seed
import time
logdir = 'results/gpulearn_yz_x_'+dataset+'_'+str(n_z)+'-'+str(n_hidden)+'-'+str(int(time.time()))+'/'
if not os.path.exists(logdir): os.makedirs(logdir)
print 'logdir:', logdir
np.random.seed(seed)
# Init data
if dataset == 'mnist':
'''
What works well:
100-2-100 (Generated digits stay bit shady)
1000-2-1000 (Needs pretty long training)
'''
import anglepy.data.mnist as mnist
# MNIST
size = 28
train_x, train_y, valid_x, valid_y, test_x, test_y = mnist.load_numpy(size, binarize_y=True)
f_enc, f_dec = lambda x:x, lambda x:x
x = {'x': train_x[:,:].astype(np.float32), 'y': train_y[:,:].astype(np.float32)}
x_valid = {'x': valid_x.astype(np.float32), 'y': valid_y.astype(np.float32)}
L_valid = 1
dim_input = (size,size)
n_x = size*size
n_y = 10
n_batch = 1000
colorImg = False
bernoulli_x = True
byteToFloat = False
mosaic_w = 5
mosaic_h = 2
type_px = 'bernoulli'
elif dataset == 'norb':
# resized NORB dataset, reshuffled
import anglepy.data.norb as norb
size = _size #48
train_x, train_y, test_x, test_y = norb.load_resized(size, binarize_y=True)
_x = {'x': train_x, 'y': train_y}
ndict.shuffleCols(_x)
train_x = _x['x']
train_y = _x['y']
# Do PCA
f_enc, f_dec, pca_params = pp.PCA(_x['x'][:,:10000], cutoff=2000, toFloat=False)
ndict.savez(pca_params, logdir+'pca_params')
x = {'x': f_enc(train_x).astype(np.float32), 'y':train_y.astype(np.float32)}
x_valid = {'x': f_enc(test_x).astype(np.float32), 'y':test_y.astype(np.float32)}
L_valid = 1
n_x = x['x'].shape[0]
n_y = 5
dim_input = (size,size)
n_batch = 1000 #23400/900 = 27
colorImg = False
bernoulli_x = False
byteToFloat = False
mosaic_w = 5
mosaic_h = 1
type_px = 'gaussian'
elif dataset == 'norb_instances':
# resized NORB dataset with the instances as classes
import anglepy.data.norb2 as norb2
size = _size #48
x, y = norb2.load_numpy_subclasses(size, binarize_y=True)
_x = {'x': x, 'y': y}
ndict.shuffleCols(_x)
# Do pre=processing
if True:
# Works
f_enc, f_dec, pca_params = pp.PCA(_x['x'][:,:10000], cutoff=600, global_sd=True, toFloat=True)
ndict.savez(pca_params, logdir+'pca_params')
elif False:
# Doesn't work
f_enc, f_dec, pp_params = pp.normalize_noise(_x['x'][:,:50000], noise_sd=0.01, global_sd=True, toFloat=True)
else:
# Doesn't work
f_enc, f_dec, params = pp.normalize_random(x=x[:,:10000], global_sd=True, toFloat=True)
ndict.savez(params, logdir+'normalize_random_params')
n_valid = 5000
x = {'x': f_enc(_x['x'][:,:-n_valid]).astype(np.float32), 'y':_x['y'][:,:-n_valid].astype(np.float32)}
x_valid = {'x': f_enc(_x['x'][:,:n_valid]).astype(np.float32), 'y':_x['y'][:,:n_valid].astype(np.float32)}
L_valid = 1
n_x = x['x'].shape[0]
n_y = 50
dim_input = (size,size)
n_batch = 5000 #23400/900 = 27
colorImg = False
bernoulli_x = False
byteToFloat = False
mosaic_w = 5
mosaic_h = 1
type_px = 'gaussian'
elif dataset == 'svhn':
# SVHN dataset
import anglepy.data.svhn as svhn
size = 32
train_x, train_y, test_x, test_y = svhn.load_numpy(False, binarize_y=True) #norb.load_resized(size, binarize_y=True)
extra_x, extra_y = svhn.load_numpy_extra(False, binarize_y=True)
x = {'x': np.hstack((train_x, extra_x)), 'y':np.hstack((train_y, extra_y))}
ndict.shuffleCols(x)
#f_enc, f_dec, (x_sd, x_mean) = pp.preprocess_normalize01(train_x, True)
f_enc, f_dec, pca_params = pp.PCA(x['x'][:,:10000], cutoff=1000, toFloat=True)
ndict.savez(pca_params, logdir+'pca_params')
n_y = 10
x = {'x': f_enc(x['x']).astype(np.float32), 'y': x['y'].astype(np.float32)}
x_valid = {'x': f_enc(test_x).astype(np.float32), 'y': test_y.astype(np.float32)}
L_valid = 1
n_x = x['x'].shape[0]
dim_input = (size,size)
n_batch = 5000
colorImg = True
bernoulli_x = False
byteToFloat = False
mosaic_w = 5
mosaic_h = 2
type_px = 'gaussian'
# Init model
n_hidden_q = n_hidden
n_hidden_p = n_hidden
from anglepy.models import GPUVAE_YZ_X
updates = get_adam_optimizer(alpha=3e-4, beta1=0.9, beta2=0.999, weight_decay=0)
model = GPUVAE_YZ_X(updates, n_x, n_y, n_hidden_q, n_z, n_hidden_p[::-1], 'softplus', 'softplus', type_px=type_px, type_qz='gaussianmarg', type_pz='gaussianmarg', prior_sd=1, uniform_y=True)
if False:
dir = '/home/ubuntu/results/gpulearn_yz_x_svhn_300-(500, 500)-1414094291/'
dir = '/home/ubuntu/results/gpulearn_yz_x_svhn_300-(500, 500)-1414163488/'
w = ndict.loadz(dir+'w_best.ndict.tar.gz')
v = ndict.loadz(dir+'v_best.ndict.tar.gz')
ndict.set_value(model.w, w)
ndict.set_value(model.v, v)
# Some statistics for optimization
ll_valid_stats = [-1e99, 0]
# Fixed sample for visualisation
z_sample = {'z': np.repeat(np.random.standard_normal(size=(n_z, 12)), 12, axis=1).astype(np.float32)}
y_sample = {'y': np.tile(np.random.multinomial(1, [1./n_y]*n_y, size=12).T, (1, 12))}
# Progress hook
def hook(epoch, t, ll):
if epoch%10 != 0:
return
ll_valid, _ = model.est_loglik(x_valid, n_samples=L_valid, n_batch=n_batch, byteToFloat=byteToFloat)
if math.isnan(ll_valid):
print "NaN detected. Reverting to saved best parameters"
ndict.set_value(model.v, ndict.loadz(logdir+'v.ndict.tar.gz'))
ndict.set_value(model.w, ndict.loadz(logdir+'w.ndict.tar.gz'))
return
if ll_valid > ll_valid_stats[0]:
ll_valid_stats[0] = ll_valid
ll_valid_stats[1] = 0
ndict.savez(ndict.get_value(model.v), logdir+'v_best')
ndict.savez(ndict.get_value(model.w), logdir+'w_best')
else:
ll_valid_stats[1] += 1
# Stop when not improving validation set performance in 100 iterations
if False and ll_valid_stats[1] > 1000:
print "Finished"
with open(logdir+'hook.txt', 'a') as f:
print >>f, "Finished"
exit()
# Log
ndict.savez(ndict.get_value(model.v), logdir+'v')
ndict.savez(ndict.get_value(model.w), logdir+'w')
print epoch, t, ll, ll_valid
with open(logdir+'hook.txt', 'a') as f:
print >>f, t, ll, ll_valid
if gfx:
# Graphics
v = {i: model.v[i].get_value() for i in model.v}
w = {i: model.w[i].get_value() for i in model.w}
tail = '-'+str(epoch)+'.png'
image = paramgraphics.mat_to_img(f_dec(v['w0x'][:].T), dim_input, True, colorImg=colorImg)
image.save(logdir+'q_w0x'+tail, 'PNG')
image = paramgraphics.mat_to_img(f_dec(w['out_w'][:]), dim_input, True, colorImg=colorImg)
image.save(logdir+'out_w'+tail, 'PNG')
_x = {'y': np.random.multinomial(1, [1./n_y]*n_y, size=144).T}
_, _, _z_confab = model.gen_xz(_x, {}, n_batch=144)
image = paramgraphics.mat_to_img(f_dec(_z_confab['x']), dim_input, colorImg=colorImg)
image.save(logdir+'samples'+tail, 'PNG')
_, _, _z_confab = model.gen_xz(y_sample, z_sample, n_batch=144)
image = paramgraphics.mat_to_img(f_dec(_z_confab['x']), dim_input, colorImg=colorImg)
image.save(logdir+'samples_fixed'+tail, 'PNG')
if n_z == 2:
import ImageFont
import ImageDraw
n_width = 10
submosaic_offset = 15
submosaic_width = (dim_input[1]*n_width)
submosaic_height = (dim_input[0]*n_width)
mosaic = Image.new("RGB", (submosaic_width*mosaic_w, submosaic_offset+submosaic_height*mosaic_h))
for digit in range(0,n_y):
if digit >= mosaic_h*mosaic_w: continue
_x = {}
n_batch_plot = n_width*n_width
_x['y'] = np.zeros((n_y,n_batch_plot))
_x['y'][digit,:] = 1
_z = {'z':np.zeros((2,n_width**2))}
for i in range(0,n_width):
for j in range(0,n_width):
_z['z'][0,n_width*i+j] = scipy.stats.norm.ppf(float(i)/n_width+0.5/n_width)
_z['z'][1,n_width*i+j] = scipy.stats.norm.ppf(float(j)/n_width+0.5/n_width)
_x, _, _z_confab = model.gen_xz(_x, _z, n_batch=n_batch_plot)
x_samples = _z_confab['x']
image = paramgraphics.mat_to_img(f_dec(x_samples), dim_input, colorImg=colorImg, tile_spacing=(0,0))
#image.save(logdir+'samples_digit_'+str(digit)+'_'+tail, 'PNG')
mosaic_x = (digit%mosaic_w)*submosaic_width
mosaic_y = submosaic_offset+int(digit/mosaic_w)*submosaic_height
mosaic.paste(image, (mosaic_x, mosaic_y))
draw = ImageDraw.Draw(mosaic)
draw.text((1,1),"Epoch #"+str(epoch)+" Loss="+str(int(ll)))
#plt.savefig(logdir+'mosaic'+tail, format='PNG')
mosaic.save(logdir+'mosaic'+tail, 'PNG')
#x_samples = _x['x']
#image = paramgraphics.mat_to_img(f_dec(x_samples), dim_input, colorImg=colorImg)
#image.save(logdir+'samples2'+tail, 'PNG')
# Optimize
dostep = epoch_vae_adam(model, x, n_batch=n_batch, bernoulli_x=bernoulli_x, byteToFloat=byteToFloat)
loop_va(dostep, hook)
pass
# Training loop for variational autoencoder
def loop_va(doEpoch, hook, n_epochs=9999999):
import time
t0 = time.time()
for t in xrange(1, n_epochs):
L = doEpoch()
hook(t, time.time() - t0, L)
print 'Optimization loop finished'
# Learning step for variational auto-encoder
def epoch_vae_adam(model, x, n_batch=100, convertImgs=False, bernoulli_x=False, byteToFloat=False):
print 'Variational Auto-Encoder', n_batch
def doEpoch():
from collections import OrderedDict
n_tot = x.itervalues().next().shape[1]
idx_from = 0
L = 0
while idx_from < n_tot:
idx_to = min(n_tot, idx_from+n_batch)
x_minibatch = ndict.getCols(x, idx_from, idx_to)
idx_from += n_batch
if byteToFloat: x_minibatch['x'] = x_minibatch['x'].astype(np.float32)/256.
if bernoulli_x: x_minibatch['x'] = np.random.binomial(n=1, p=x_minibatch['x']).astype(np.float32)
# Get gradient
#raise Exception()
L += model.evalAndUpdate(x_minibatch, {}).sum()
#model.profmode.print_summary()
L /= n_tot
return L
return doEpoch
def get_adam_optimizer(alpha=3e-4, beta1=0.9, beta2=0.999, weight_decay=0.0):
print 'AdaM', alpha, beta1, beta2, weight_decay
def shared32(x, name=None, borrow=False):
return theano.shared(np.asarray(x, dtype='float32'), name=name, borrow=borrow)
def get_optimizer(w, g):
updates = OrderedDict()
it = shared32(0.)
updates[it] = it + 1.
fix1 = 1.-beta1**(it+1.) # To make estimates unbiased
fix2 = 1.-beta2**(it+1.) # To make estimates unbiased
lr_t = alpha * T.sqrt(fix2) / fix1
for i in w:
gi = g[i]
if weight_decay > 0:
gi -= weight_decay * w[i] #T.tanh(w[i])
# mean_squared_grad := E[g^2]_{t-1}
mom1 = shared32(w[i].get_value() * 0.)
mom2 = shared32(w[i].get_value() * 0.)
# Update moments
mom1_new = mom1 + (1.-beta1) * (gi - mom1)
mom2_new = mom2 + (1.-beta2) * (T.sqr(gi) - mom2)
# Compute the effective gradient
effgrad = mom1_new / (T.sqrt(mom2_new) + 1e-8)
# Do update
w_new = w[i] + lr_t * effgrad
# Apply update
updates[w[i]] = w_new
updates[mom1] = mom1_new
updates[mom2] = mom2_new
return updates
return get_optimizer