forked from juxiangwu/deeplearning-notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path16-edge-enhance.py
95 lines (77 loc) · 2.94 KB
/
16-edge-enhance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# -*- coding: utf-8 -*-
from __future__ import absolute_import, print_function
import numpy as np
import pyopencl as cl
import cv2
from PIL import Image
def RoundUp(groupSize, globalSize):
r = globalSize % groupSize;
if r == 0:
return globalSize
else:
return globalSize + groupSize - r
# 创建Context
# 如果有多个设备,则会提示选择
ctx = cl.create_some_context()
# 创建CommandQueue
queue = cl.CommandQueue(ctx)
mf = cl.mem_flags
# 通过字符串内容编译OpenCL的Program
prg = cl.Program(ctx, """
void filter2d_internal(__read_only image2d_t input,
__write_only image2d_t output,
const int maskWidth,
const int maskHeight,
float * mask,int compute_aver){
const sampler_t sampler = CLK_FILTER_NEAREST |
CLK_NORMALIZED_COORDS_FALSE |
CLK_ADDRESS_CLAMP_TO_EDGE;
const int2 size = get_image_dim(input);
int2 coord = (int2)(get_global_id(0),get_global_id(1));
const int maskrows = maskWidth / 2;
const int maskcols = maskHeight / 2;
float4 color = (float4)(0,0,0,1.0f);
int idx = 0;
for(int y = -maskrows;y <= maskrows;++y){
for(int x = -maskcols; x <= maskcols;++x){
float4 srcColor = read_imagef(input,sampler,(int2)(x + coord.x,y + coord.y));
color.xyz += srcColor.xyz * mask[idx];
idx++;
}
}
if(compute_aver){
color.xyz = color.xyz / (maskWidth * maskHeight);
}
write_imagef(output,coord,color);
}
__kernel void edge_enhance_filter(__read_only image2d_t input,
__write_only image2d_t output){
float color_mask [9] = {0,0,0,-20,20,0,0,0,0};
filter2d_internal(input,output,3,3,color_mask,1);
}
""").build()
# 打开图片文件
src1 = Image.open('temp/images/f2.png')
print(src1.size)
dist = Image.new('RGBA',(640,480),(255,255,255))
# OpenCL处理的图片文件格式RGBA,unit8
imageFormat = cl.ImageFormat(cl.channel_order.RGBA,cl.channel_type.UNSIGNED_INT8)
# 将图片从Host复制到Device
img1 = cl.Image(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR,imageFormat,src1.size,None,src1.tobytes())
output = cl.Image(context=ctx,flags=mf.WRITE_ONLY,format=imageFormat,shape=src1.size)
# 根据图片大小定义WorkSize
localWorkSize = ( 8, 8 )
globalWorkSize = ( RoundUp(localWorkSize[0], src1.size[0]),
RoundUp(localWorkSize[1], src1.size[1]))
# 执行Kernel
prg.edge_enhance_filter(queue,globalWorkSize,localWorkSize,img1,output)
buffer = np.zeros(src1.size[0] * src1.size[1] * 4, np.uint8)
origin = ( 0, 0, 0 )
region = ( src1.size[0], src1.size[1], 1 )
# 将处理好的图片从设备复制到HOST
cl.enqueue_read_image(queue, output,
origin, region, buffer).wait()
# 保存图片
dist = Image.frombytes("RGBA",src1.size, buffer.tobytes())
dist.save('temp/images/cl-output.png')
dist.show()