diff --git a/.gitignore b/.gitignore index f464181..0289d9e 100644 --- a/.gitignore +++ b/.gitignore @@ -19,6 +19,10 @@ var/ *.egg-info/ .installed.cfg *.egg +.ropeproject/ + +# Notebooks +.ipynb_checkpoints/ # Installer logs pip-log.txt diff --git a/examples/notebooks/.ipynb_checkpoints/reinstantiate_model-checkpoint.ipynb b/examples/notebooks/.ipynb_checkpoints/reinstantiate_model-checkpoint.ipynb deleted file mode 100644 index 22cbd42..0000000 --- a/examples/notebooks/.ipynb_checkpoints/reinstantiate_model-checkpoint.ipynb +++ /dev/null @@ -1,207 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Restoring Gradient Boosted Regression Model After Optimization" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "from hyperspace.kepler.data_utils import load_results" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Reload the objective function" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "def objective(params):\n", - " \"\"\"\n", - " Objective function to be minimized.\n", - " Parameters\n", - " ----------\n", - " * params [list, len(params)=n_hyperparameters]\n", - " Settings of each hyperparameter for a given optimization iteration.\n", - " - Controlled by hyperspaces's hyperdrive function.\n", - " - Order preserved from list passed to hyperdrive's hyperparameters argument.\n", - " \"\"\"\n", - " #max_depth, learning_rate, max_features, min_samples_split, min_samples_leaf = params\n", - " max_depth, max_features, min_samples_split, min_samples_leaf = params\n", - "\n", - " reg.set_params(max_depth=max_depth,\n", - " learning_rate=learning_rate,\n", - " max_features=max_features,\n", - " min_samples_split=min_samples_split,\n", - " min_samples_leaf=min_samples_leaf)\n", - "\n", - " return -np.mean(cross_val_score(reg, X, y, cv=5, n_jobs=-1,\n", - " scoring=\"neg_mean_absolute_error\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Load results from optimization" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of results: 32\n", - "\n", - "Hyperparameters of our best model:\n", - " [7, 0.18920799259946858, 6, 2, 1]\n" - ] - } - ], - "source": [ - "gbm_results = load_results(\"../gbm_results\", sort=True)\n", - "best = gbm_results[0]\n", - "\n", - "# Get the hyperparameter values\n", - "print('Hyperparameters of our best model:\\n {}'.format(best.x))\n", - "\n", - "max_depth = best.x[0]\n", - "learning_rate = best.x[1]\n", - "max_features = best.x[2]\n", - "min_samples_split = best.x[3]\n", - "min_samples_leaf = best.x[4]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Retraining the Gradient Boosted Regressor with Optimal Hyperparameters" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "from sklearn.datasets import load_boston\n", - "from sklearn.ensemble import GradientBoostingRegressor\n", - "from sklearn.model_selection import cross_val_score" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Negative Mean Absolute Error with optimal hyperparameters: 2.9032924372635147\n" - ] - } - ], - "source": [ - "boston = load_boston()\n", - "X, y = boston.data, boston.target\n", - "n_features = X.shape[1]\n", - "\n", - "reg = GradientBoostingRegressor(n_estimators=50, random_state=0)\n", - "\n", - "reg.set_params(max_depth=max_depth,\n", - " learning_rate=learning_rate,\n", - " max_features=max_features,\n", - " min_samples_split=min_samples_split,\n", - " min_samples_leaf=min_samples_leaf)\n", - "\n", - "final_results = -np.mean(cross_val_score(reg, X, y, cv=5, n_jobs=-1, scoring=\"neg_mean_absolute_error\"))\n", - "print('Negative Mean Absolute Error with optimal hyperparameters: {}'.format(final_results))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Notes\n", - "\n", - "HyperSpace keeps track of each of the distributed models evaluations. The minimum objective function evaluation at each distributed run can be found in the results `.fun`. We can verify that our re-evaluated model above returns the same negative mean absolute error as that reported by Hyperspace:" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "final_results == best.fun" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/examples/notebooks/.ipynb_checkpoints/visualizing_results-checkpoint.ipynb b/examples/notebooks/.ipynb_checkpoints/visualizing_results-checkpoint.ipynb deleted file mode 100644 index ee86458..0000000 --- a/examples/notebooks/.ipynb_checkpoints/visualizing_results-checkpoint.ipynb +++ /dev/null @@ -1,146 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### A Hitchhiker's Guide to HyperSpace Results\n", - "\n", - "HyperSpace keeps record of all parallel optimization runs. This is powerful information in that we can explore how our models behave under various hyperparameter spaces. Not only do we discover hyperparameter spaces within which our models perform well, we also find which spaces within which our models perform poorly." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "from hyperspace.kepler.plots import plot_convergence\n", - "from hyperspace.kepler.data_utils import load_results\n", - "\n", - "import matplotlib.pyplot as plt\n", - "from matplotlib.pyplot import cm\n", - "\n", - "%matplotlib inline " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The plotting functions need to have access to the objective function that was minimized. Let's bring that back into view:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "def objective(params):\n", - " \"\"\"\n", - " Objective function to be minimized.\n", - " Parameters\n", - " ----------\n", - " * params [list, len(params)=n_hyperparameters]\n", - " Settings of each hyperparameter for a given optimization iteration.\n", - " - Controlled by hyperspaces's hyperdrive function.\n", - " - Order preserved from list passed to hyperdrive's hyperparameters argument.\n", - " \"\"\"\n", - " #max_depth, learning_rate, max_features, min_samples_split, min_samples_leaf = params\n", - " max_depth, max_features, min_samples_split, min_samples_leaf = params\n", - "\n", - " reg.set_params(max_depth=max_depth,\n", - " #learning_rate=learning_rate,\n", - " max_features=max_features,\n", - " min_samples_split=min_samples_split,\n", - " min_samples_leaf=min_samples_leaf)\n", - "\n", - " return -np.mean(cross_val_score(reg, X, y, cv=5, n_jobs=-1,\n", - " scoring=\"neg_mean_absolute_error\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of results: 16\n", - "\n" - ] - } - ], - "source": [ - "gbm_results = load_results(\"/Users/ygx/hyperspace/examples/gbm_results\", sort=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEYCAYAAABGJWFlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzt3XuUZGdZ7/HvU/fqrr7NNXNLJpch\nJMQEmCBBgzJJ1IAKyEJRQDmC5ogoHBEPCojAQfEuuE4UXKiEi4wYAXM4RxZZMAERYsiE3DO5TWaS\nuc/09K26u7q7qp7zx96T1HSqu6t6alfVnv591qo1Vbveeus3PT311N7v3u9r7o6IiMh8iU4HEBGR\n7qQCISIidalAiIhIXSoQIiJSlwqEiIjUpQIhIiJ1qUCIrDBmttXM3MxSnc4i3U0FQrqKmb3ezO40\ns6KZHTazfzezqzuda6Uysw+Y2Wc7nUM6QwVCuoaZvRP4KPBHwHrgXOBvgFd1MlctfeuWlUQFQrqC\nmQ0AHwLe5u5fdPdJd59z9//j7r8Ttsma2UfN7FB4+6iZZcPnXmZmB8zst83sWLj38cvhc1eZ2REz\nS9a838+Y2b3h/YSZ/a6ZPW5mw2b2BTNbFT536nDMW8zsSeAb4fZfMrP9YfvfN7N9ZnZdE/29ycye\nNLMTZvbemlxJM3tP+NoJM9ttZlvC555rZrea2Ukze9jMfm6Rn+dtZvYRM7vDzMbM7N9OZajTdqOZ\n3RL2+5iZ/Wq4/XrgPcDrwj26e5b1jyuxpQIh3eIlQA740iJt3gtcBTwfuAL4QeB9Nc+fAwwAm4C3\nADea2ZC73w5MAtfUtH098E/h/bcDrwZ+FNgIjAA3znvvHwUuAX7CzC4l2LN5A7Ch5j1PaaS/q4GL\ngWuB95vZJeH2dwK/ALwC6AfeDEyZWS9wa5h5Xdjmb8zseQv+tOCXwtdvBMrAXy/Q7vPAgbDda4E/\nMrNr3f2rBHtz/+zuBXe/YpH3krORu+umW8dvBB+2R5Zo8zjwiprHPwHsC++/DJgGUjXPHwOuCu9/\nGPiH8H4fQcE4L3z8EHBtzes2AHNACtgKOHBBzfPvBz5f87gHmAWua6K/zTXP3wH8fHj/YeBVdf7u\nrwP+Y962TwB/sMDP6jbgj2seXxpmTNZkSAFbgArQV9P2I8CnwvsfAD7b6d8P3Tpz0/FU6RbDwBoz\nS7l7eYE2G4H9NY/3h9ue7mPea6eAQnj/n4DvmNlbgdcAd7n7qb7OA75kZtWa11YIxkFOeWpejqcf\nu/uUmQ3XPN9If0cWyLmFoBDOdx7wYjMbrdmWAj5Tp229zPuBNLBmXpuNwEl3n5jX9spF+pUVQoeY\npFt8FygRHJpZyCGCD8pTzg23LcndHyT44Hs5px9eguCD9OXuPlhzy7n7wdouau4fBjafemBmeWB1\nk/0t5CngwgW2f3NenwV3f+sifW2puX8uwV7MiXltDgGrzKxvXttTWTXd8wqmAiFdwd3HCA7d3Ghm\nrzazHjNLm9nLzexPw2afB95nZmvNbE3YvplTMP+JYHzgR4B/qdn+ceAPzew8gLD/xc6cuhn4aTP7\nITPLAB8E7Az6q/VJ4H+Z2TYLXG5mq4GvAM8xs18Mfy5pM3tRzdhFPW80s0vNrIfgBICb3b1S28Dd\nnwK+A3zEzHJmdjnB+M3nwiZHga1mps+KFUj/6NI13P0vCQZp3wccJ/jW/BvAl8MmHwbuBO4F7gPu\nCrc16vMEYxXfcPfab9IfA24BvmZmE8DtwIsXyfkA8JvAToK9iQmC8Y6Z5fQ3z18CXwC+BowDfw/k\nw0NAPw78PMG3/iPAnwDZRfr6DPCpsG2OoDjW8wsE4xKHCE4S+AN3vzV87lQhHTazuxr8O8hZwty1\nBylyJsysAIwC29z9iU7ngeA0V4LB5U92OovEl/YgRJbBzH46PAzWC/w5wR7Nvs6mEmktFQiR5XkV\nwSGZQ8A2gtNUtTsuZxUdYhIRkbq0ByEiInXF+kK5NWvW+NatWzsd4zSTk5P09vZ2OkbD4pQ3Tlkh\nXnnjlBXilbcbs+7evfuEu69dql2sC8TWrVu58847Ox3jNLfddhsve9nLOh2jYXHKG6esEK+8ccoK\n8crbjVnNbP/SrXSISUREFqACISIidalAiIhIXSoQIiJSlwqEiIjU1ZYCEc4SeYeZ3WNmD5jZB+u0\n+TUzu8/M7jazb4erdomISIe0aw9iBrjGgyULnw9cb2ZXzWvzT+7+A+7+fOBPCWa1FBGRDmnLdRDh\nHDXF8GE6vPm8NuM1D3vnP99KJx4dp3h0ZumGyzB67yz7Uscj6TsKccobp6wQr7xxymoJmNw/x4lH\nJpZu3AWmDpQjyZrOJxnY0tPyfmu1bS4mM0sCu4GLgBvd/d112ryNYD2ADMEex6N12twA3ACwfv36\n7Tt37mw6S/GJOaYPVJZuuAzTpWnyuXwkfUchTnnjlBXilTdOWQFmqiWGzu/FErZ04w6bmpyip7f1\nH+SJjJFbl1zWa3fs2LHb3ZdeVrbdi2ADg8Au4LJF2rweuGmpvrZv3+7dZteuXZ2O0JQ45Y1TVvd4\n5Y1T1qmRGb/lE1/zE4+Oe7Va7XScJXXjzxa40xv4vG77WUzuPgrcBly/SLOdLL42sYisUPnBDNn1\nSWbG5hjdN9npOGe1dp3FtNbMBsP7eeA6YM+8NttqHv4k8KzDSyIiAJmBBH2b8kyfnGXsqalOxzlr\ntWuyvg3ATeE4RAL4grt/xcw+RLCrcwvwG2Z2HTAHjABvalM2EYmhvnPyVOecyWMlEmmj75z4jKHE\nRbvOYroXeEGd7e+vuf+OdmQRkbPHwJYequUqEwenSaQS9K7JdjrSWSXW032LiAxu7aVaccb2T5JI\nGfnBTKcjnTU01YaIxJqZMXRBgUwhxcjeIjMTc52OdNZYkXsQ1WqVymw1kr4rs1XmSuVI+o5CnPLG\nKSvEK2+cskL9vH2bcgw/WuToA6OseU4f6Z7u+HirVqP5rGmH7vgJttnY/ime/M8TkfR9fM8MDx47\nEEnfUYhT3jhlhXjljVNWWDhvtVJl4vA0+75xjMKGHMn08i4ka6UTj89yaPAkuYEMqVyCVC4Z3hIk\nkt19EGdFFoj86gznvHAokr6fKqcj6zsKccobp6wQr7xxygqL562UKozsm8QSxtD5vSTSHfwQdnj8\nqDFxaJrKnJNM22mTCCXSCdL5ZwrGqeKR7GTmGiuyQOT6M+QujWYgq3AsxfpLByLpOwpxyhunrBCv\nvHHKCkvnXfPcfoYfniCZTrDm4r6OflMfPJRhaFOBcqlC/+Y82f4M5VIlvFUplypMnZjBq89UDksa\nqVzyWcUjmUlg1r7pRVZkgRCRs1umJ8WqiwoMPzrByceKrNrWR6JD8zYl0saai/sYeWKS8aem6Vlb\nZWBLDzbvbKvy7DMF41TxKI3OUi3XFI6EkcwGxSK/KhP5GVsqECJyVsr2pRk6v8DI3iIje4usurDQ\n1m/ftRLJBKsuLDB+cJrJoyXKpSqrLuw9bc8mlUmSyiShP33aayvl6ml7G+VShbmpMume6MdXVCBE\n5KyVH8pQPa+Xsf2TjO6bZOj8QseymBkDm3tI55OM7p/kxJ4Jhi4skM4t/kGfTCVIFhJkOxC9O0ZC\nREQi0rsmS9/G7pm3qWd1ltXP6aNarnJizzil8e69bkMFQkTOen0b8vSuyzF5rMTEkelOxyFbSLPm\nuf0kMwlOPjbB5PFSpyPVpQIhIivCwJYe8qsyTBycZvJENCtKNiOVTbLm4j6y/WnGnpxi9MnJU+vh\ndA0VCBFZMQa39pIdSDO2f5Lp0dlOx3l68Lp3fY6p4zOcfKxItdI9V16vyEHqA/81zPRYNL8cw/fO\n8Ojs4Uj6jkKc8sYpK8Qrb5yywpnl9SqMH5ziqdtP0LcpH/mUHI1mnRmfY/JoiWQ6QWFjnmRm8e/v\n+YEMm1+8ulUx69IehIisKJaA/o15kukEE4dLlEvRrE/frGx/mr7NeapVZ+ypKWYnOz83lgqEiKw4\nljT6NuVJJIJpMKpz3XFYJ51PMbClh2TKKB6aZma0s2c4qUCIyIqUSAfLlgKMH5jGy90xQJxIJ+jf\n3EO6J8nk8RKTx0p0aux6RY5BRHnc7mDmYba9bENk/bdanPLGKSvEK2+cskJr885OlRl+eAJL2pLH\n/ZcjdyTJ4Lm9Tb9ucGsvk0dLTA3PYsDApjxWc+V1z+roF0ZakQVCROSUTE+KVdsKFI+UTptptVUs\nAYnkcqb4MPo39ZDuTTFxcIrR/VMMnNtDKhteed2GaUNUIERkxcsW0mQvSi/dcBl6DqZYva3vjPqY\nuaSfkceLVMtO4bwc2b5oss6nMQgRkS5Xe+X18KPtu/JaBUJEJAbmX3k9fij6KUNUIEREYuLUldeF\nc3LkBqI/zKQxCBGRGDELBq/bQXsQIiJSlwqEiIjUpQIhIiJ1qUCIiEhdKhAiIlKXCoSIiNSlAiEi\nInWpQIiISF0qECIiUldbCoSZ5czsDjO7x8weMLMP1mnzTjN70MzuNbOvm9l57cgmIiL1tWsPYga4\nxt2vAJ4PXG9mV81r833gSne/HLgZ+NM2ZRMRkTraUiA8UAwfpsObz2uzy92nwoe3A5vbkU1EROoz\nb9Nip2aWBHYDFwE3uvu7F2n7v4Ej7v7hOs/dANwAsH79+u07d+6MKPHyFItFCoVCp2M0LE5545QV\n4pU3TlkhXnm7MeuOHTt2u/uVSzZ097begEFgF3DZAs+/kWAPIrtUX9u3b/dus2vXrk5HaEqc8sYp\nq3u88sYpq3u88nZjVuBOb+Dzuu1nMbn7KHAbcP3858zsOuC9wCvdfabN0UREpEa7zmJaa2aD4f08\ncB2wZ16bFwCfICgOx9qRS0REFtauBYM2ADeF4xAJ4Avu/hUz+xDBrs4twJ8BBeBfzAzgSXd/ZZvy\niYjIPG0pEO5+L/CCOtvfX3P/unZkERGRxuhKahERqUsFQkRE6lKBEBGRulQgRESkLhUIERGpq+EC\nYWY/a2Z94f33mdkXzeyF0UUTEZFOamYP4vfdfcLMrgZ+ArgJ+NtoYomISKc1UyAq4Z8/Cfytu/8b\nkGl9JBER6QbNFIiDZvZ3wOuA/2dm2SZfLyIiMdLMB/zPAv8O/Hg44d4Q8K5IUomISMctOdWGmU3w\nzOI+Bng4V5KF2/sjSyciIh2zZIFw9752BBERke6iMQQREamrmUNMVudpd3cdYhIROQvpEJOIiNTV\n1HoQZjYEbANyp7a5+7daHUpERDqv4QJhZr8CvAPYDNwNXAV8F7gmmmgiItJJzQxSvwN4EbDf3XcQ\nrBB3PJJUIiLScc0UiJK7lwDMLOvue4CLo4klIiKd1swYxAEzGwS+DNxqZiPAoWhiiYhIpzVcINz9\nZ8K7HzCzXcAA8NVIUomISMc1dRbTKe7+zVYHERGR7tLMgkE3hYeYTj0eMrN/iCaWiIh0WjOD1JeH\ns7gC4O4jBGcyiYjIWaiZApEIL5QDwMxWscxDVCIi0v2a+YD/C+A7ZnYzwdxMPwf8YSSpRESk45o5\ni+nTZnYnwZXTBrzG3R+MLJmIiHRUU4eIwoKgoiAisgJoPQgREalLBUJEROpqZjbXa4A3AKPA/cC9\nwP3uPhNRNhER6aBmxiA+C7wtfM3lwKuB5wEXRZBLREQ6rJkC8Zi7fym8/y9RhBERke7RzBjEN83s\nt8ys3trUizKznJndYWb3mNkDZvbBOm1+xMzuMrOymb222fcQEZHWamYP4nnAZcC7zWw3wapyd7t7\nI3sTM8A17l40szTwbTP7d3e/vabNk8B/A97VRCYREYlIMxfKvQbAzPI8UyxeTAOHm9zdgWL4MB3e\nfF6bfWH/1UYziYhIdCz47G7DG5klgd0Eg9o3uvu7F2j3KeAr7n7zAs/fANwAsH79+u07d+6MJvAy\nFYtFCoVCp2M0LE5545QV4pU3TlkhXnm7MeuOHTt2u/uVSzZ097begEFgF3DZAs9/CnhtI31t377d\nu82uXbs6HaEpccobp6zu8cobp6zu8crbjVmBO72Bz9i2XyjnwZThtwHXt/u9RUSkcQ0VCAtsWe6b\nmNnaU4sNhWMY1wF7ltufiIhEr6ECEe6SfPkM3mcDsMvM7gW+B9zq7l8xsw+Z2SsBzOxFZnYA+Fng\nE2b2wBm8n4iInKFmTnO93cxe5O7fa/ZN3P1e6qw+5+7vr7n/PWBzs32LiEg0mikQO4BfM7N9wCTB\nmhDu7pdHEUxERDqrmQLx8shSiIhI12nmLKYngZcCb3L3/QQXuq2PJJWIiHRcMwXib4CXAL8QPp4A\nbmx5IhER6QrNHGJ6sbu/0My+D+DuI2aWiSiXiIh0WDN7EHPhdBkOwbUNgOZNEhE5SzVTIP4a+BKw\nzsz+EPg28JFIUomISMc1M5vr58Jpvq8lOMX11e7+UGTJRESko5pZk/pPPJiBdU+dbSIicpZp5hDT\nj9XZpmsjRETOUkvuQZjZW4FfBy4I51I6pQ/4z6iCiYhIZzVyiOkVwE8BDwM/XbN9wt1PRpJKREQ6\nrpECcWH458PAOMEANQBmtkpFQkTk7NRIgfg48FXgfIIlQ63mOQcuiCCXiIh02JKD1O7+1+5+CfCP\n7n6Bu59fc1NxEBE5SzVzHcRbzWwI2AbkarZ/K4pgIiLSWc1cB/ErwDsIFvW5G7gK+C5wTTTRRESk\nk5q5DuIdwIuA/e6+g2CFuOORpBIRkY5rpkCU3L0EYGZZd98DXBxNLBER6bRmpvs+YGaDwJeBW81s\nBDgUTSwREem0Zgapfya8+wEz2wUMEJz+KiIiZ6Fm9iCe5u7fbHUQERHpLs2MQYiIyAqiAiEiInU1\nXSDMrDdcelRERM5iSxYIM0uY2evN7P+a2TGCBYMOm9kDZvZnZrYt+pgiItJujexB7CKY0fX3gHPc\nfYu7rwNeCtwO/LGZvTHCjCIi0gGNnMV0nbvPzd8YTvP9r8C/mlm65clERKSjGpnNdQ7AzD5qZrZY\nGxEROXs0M0hdBG4xs14AM/txM9OSoyIiZ6lmrqR+n5m9HrjNzGaASeB3I0sWodmpMlMnZiLpu3S0\nwuiTk5H0HYU45Y1TVohX3qiy5ocyZPt0BDqumpnu+1rgVwkKwwbgLe7+cFTBolSZrVIamY2k73Ix\nur6jEKe8ccoK8cobRVavwtTxGfo25ek7J9/SvqU9mplq473A77v7t83sB4B/NrN3uvs3IsoWmfxg\nhvxgJpK+CyNpzrliKJK+oxCnvHHKCvHKG0XWatUZ2z/JxMFpZotlhs7vJZHUtblx0vC/lrtf4+7f\nDu/fB7wc+HAjrzWznJndYWb3hNdPfLBOm6yZ/bOZPWZm/2VmWxvNJiLdJ5Ewhs4v0L+lh5nxOY4/\nNM7cdLnTsaQJjVwot9CZS4eBaxdrU2MGuMbdrwCeD1xvZlfNa/MWYMTdLwL+CviTpbKJSPcrrMux\n+jl9eBVO7Jlgajia8T9pvYYulDOz3zSzc2s3mlkGeImZ3QS8abEOPFAMH6bDm89r9irgpvD+zcC1\nDRQeEYmBbCHN2kv6SfemGN03yeiTk7jP/wiQbmNL/SOZWQ54M/AG4HxgFMgBSeBrwI3ufveSbxTM\n37QbuCh8zbvnPX8/cL27HwgfPw682N1PzGt3A3ADwPr167fv3Lmzgb9m+xSLRQqFQqdjNCxOeeOU\nFeKVt11Z3Z2ZE1XmRqokckZ+Q5JEuvnvgfrZnpkdO3bsdvcrl2zo7ovegI+Ff/YQfPPfAAwu9bpF\n+hskmL7jsnnbHwA21zx+HFi9WF/bt2/3brNr165OR2hKnPLGKat7vPK2O+vUyRk/dNdJP3z3SS+N\nzzb9ev1szwxwpzfwed3IWUzXhn/+h7tvBw43XqfqFqRRM7sNuB64v+apA8AWgqVNUwQr1p08k/da\nSLXqVMvVKLqmOueUZyuR9B2FOOWNU1aIV96osibTCeodKc4PZUjlk4w8XmT4kQmdCtulGikQXzWz\n7wLnmNmbgXuAB9y91OibmNlaYC4sDnngOp49CH0LwVjGd4HXAt8IK13LzYzNMbK3uHTDZZh8osyx\nVWOR9B2FOOWNU1aIV96osiYzCXrWZulZkyWZOn3IM51LsuaSfkb3BafCzk1WGNzao1Nhu8iSBcLd\n32VmFwC3EYxBvBJ4npnNAve7++saeJ8NwE3hOEQC+IK7f8XMPkSwq3ML8PfAZ8zsMYI9h59f1t+o\nAemeJAPn9UbSd/ZAdH1HIU5545QV4pU3kqzuTI/MMXFwmuLhEvlVGXrWZsn0PPOxk0gYqy4oUDxW\nYvzAFMcfKrPqwgLp/LJWQ5YWa+hfwd33mtl17v7IqW1mVgAua/D19wIvqLP9/TX3S8DPNtLfmUpl\nk6Sy0ax5lBlI0LsmG0nfUYhT3jhlhXjljSpr79occ9NlJo/PMD08y9SJGTKFFL3rcuQG008ffiqs\ny5HuSTKyd5ITeyYYOK+HnlXx+NmdzZop0/vDuZi2znvd7S1NJCJnlXQ+xeC5Kfo35Zk6Mcvk8RIj\ne4sk0gl612bpWRscfjp1KuzI3iKjT0wyN1mhf3O+7hiGtEczBeLfgDGCU1V1pYuINCWRTFBYn6N3\nXZaZ8Tkmj80wcWiaicPT5Fdl6V0XHH5a/Zw+xg9OM3m0xOxkcMgpmda4RCc0UyA2u/v1kSURkRXB\nzMgNZMgNZJgrVZg8VmJ6eJbp4RnSvSl612Xp35QnE15Ud/zBMYYuKGhW2A5opix/J5ykT0SkJdK5\nJIPn9rL+8gH6t/RQLVcZfWKSo/eNUS5VWHVRgUQqwfAjExSPNnzipLRIM3sQVwP/zcyeIDjEZASz\naFweSTIRWTESyQSFdTkK63KUxmafPvyEQbY/jbszfmCK2WKZwa09nY67YjRTIF4eWQoRkVDt4aep\n4zNMDc/gFWduukJpfJLZqTLThyuMPBHNtUytFlXW7EA68jO9mllRbn+UQUREaqVzSQa29NC3Mcf0\nyWCvYmp4hpOPTVDcO8eR/Ghr39AgmU2SyiZIZhIkswlSmSR2huPjlZIzO9n6ac7TPdFfK7LkO5jZ\nt939ajObIJiBtfacM3f3/sjSiciKl0gm6F2bo3dtjtL4HNMnZ9k/nWL95YMtfR+vOuVShcrMM9Pw\nVOeqJDMJUrlkeAvv55PPujJ8IYUTKdZf1tqs7dLIldRXh3/2RR+nPapVxyvRTDVcLTuVuWjmeYpC\nnPLGKSvEK29Es9q0XK4/Ta4/TX5filUXRDNDqntQKMqlavhncH/qxAxefebnZEkjnU8+q3gkM/Xn\nn4qjZtakvhJ4D/MulIvjIHWkczHtLXN0qMW7vhGKU944ZYV45Z16soK7nzUfbGfCzEjnU6TrzB1Y\nnn124SiNzVE9UXNpmFFTNJLMjlaZPN76M7DSPSkyvdEeZmqm988BvwPcB8Tja9ECNBfTM+KUN05Z\nIT55y6UK1d3O9MisprdYQiqTJJVJQv/p12RUK9XTCsfcdIW5qTKlkVlmjlUYe3Kq5VkK5+S6qkAc\nDyfViz3NxfSMOOWNU1aIV95E1oIJ9YYy2otYhkQyQaY38awPbHend6T14yXAGQ+eN6KZAvEHZvZJ\n4OvUTLXh7l9seSoRaavMqgTlUkV7ES1mZiRSFtupQpopEL8MPJdgVblTh5gcUIEQibl0X4JUPqm9\nCDlNMwXiCnfXVBsiZ6m+DXlG9ha1FyFPa2a/53YzuzSyJCLSUaeWAS0eLsXmtFeJVjMF4mrgbjN7\n2MzuNbP7zOzeqIKJSPv1bcwHYxEnZzsdRbpAM4eYNNW3yFkuP5hhIp8M12jQWMRKp7mYROQ0fRvz\njDxeZPrkLD2rNRaxkq3IlcHLsxVmi62fPAtgbrzK1Mn4LLgXp7xxygrxyluZeWbMIT+YodiT0l6E\nrMwCMTdZYfSJyUj6Lh2Jru8oxClvnLJCvPJOPVlmemSW/FAGgMKGnPYiZGUWiGx/irXPG4ik757h\n6PqOQpzyxikrxCivO8kHjZG9RSpbeiisy2kvQoAVWiASyQSJaGbaIJkx0rmIOo9AnPLGKSvEK29+\nU5LcYIbxp6aolp3+jXn6NuY4+Zj2IlayeF7/LSItZQlj6IJeetZkKR6eZnT/JNn+NOlwL0LXRaxM\nK3IPYnp0lrH90RwbLj4+x5GhkUj6jkKc8sYpK8Qrb/HxuaenJp8emWH40QmO3pci259i4lCJqRMz\nT49PNKOwIU9hXa7VcaVNVmSBSGYS5Jbxy96IVCG6vqMQp7xxygrxylubNTeUIb96holD01SrkF+T\npTJXJTuYbmosYm6ywsShYAyj0dXXpLusyAKR6UmROTeav3pub5LBc7t/DYBT4pQ3TlkhXnnnZx08\nt5fprbOMPFGkOlfFHTK96aamL58rVTj+wBjFIyUGNvdEEVsiprIuInXlhzKs3tZHMpukeGyG0X3F\npsYi0rkk+dVZJo+VKM9WIkwqUVGBEJEFZfvSrH5OH71rMpx8tMhokyuj9W0Mxh+Kh1u/5KZETwVC\nRBaV6Umxcfsq0oUUB+8YZnq08avDU5kkvWtzTJ2YYa6kvYi4WZFjEKWx2UjWiAUo7p3j6Op4LFQP\n8cobp6wQr7yNZM0NpTl4xwQP3HyAtRf3kRtsbAC+UnFO7i1SPNaisQiDmeEK1aqTSOgCviityAJR\nPFJiajiaOXLmxj2yvqMQp7xxygrxytto1txQhskj0xytOL3rsvQ0epaWEXwpM8744sHKbJXxB+d4\nJHOI3rVZcl2+At7UgTInHploeb/pfJKBLdEO/q/IApHuSdG3MZofbPZAIrK+oxCnvHHKCvHK22jW\nTH+a0YHgY8MILrArnJNf8nWF9TmGH50gkbCW/ExyTyZJZhJMHJ5maniGwvoc2f54nFIcJ20pEGa2\nBfg0cA7BetZ/5+4fm9dmCPgH4EKgBLzZ3e+PIk+UVbfnUIo1z+mLrP9Wi1PeOGWFeOVtJmu2N0Vl\ntkp2IM3U8RmSaWNwa++S3+Lzq7KMH5iib0OObF/6jPL2HUqz7WUbKI3NMn5wmvJ0Ba84/ZvzZ9x3\nq8Xp92C+dg1Sl4HfdvdLgKuAt9VZvvQ9wN3ufjnwS8DHEJGuU9iQpzJbJZ1P0rcpz/TJWU4+VqRa\nXfwU2J61WZKZBOMHp1uWJTdfMwWuAAANvUlEQVSQYe0l/Qxu7aVarjL8yATDj04wOxXNdP4rTVsK\nhLsfdve7wvsTwEPApnnNLgW+HrbZA2w1s/XtyCcijcv1p8kUUhSPlCiszzFwXi8z43MMPzJBpVxd\n8HWJhFHYkGdussz0aOuWNDUzelZnWfu8Afo39zA3VebEQ+OMPFGkPKMzp86EtXsSLjPbCnwLuMzd\nx2u2/xGQc/d3mtkPAt8BXuzuu+e9/gbgBoD169dv37lzZ7uiN6RYLFIoFDodo2FxyhunrBCvvM1m\nLU9VmT5QIbsuSWYwwVyxSulwhUTayG9KkkjXP9zk7kztDz60e85LLntwebG8XnFmR6rMjgTFKj2Q\nILM6QSLZmYHsbvw92LFjx253v3LJhu7ethtQAHYDr6nzXD/wj8DdwGeA7wFXLNbf9u3bvdvs2rWr\n0xGaEqe8ccrqHq+8y8l6fM+YH75nxCuVqru7lyZm/dD3T/rhe0Z8dmpuwddNnZzxg3cO++SJ0nLj\nNpS3PFvxkX1FP7h72A/dddLHD015pVxZ9nsuVzf+HgB3egOf2W27UM7M0sC/Ap9z9y/Of97dx939\nl939+QRjEGuBJ9qVT0Sa07cxT3WuytSJ4PTYbCHNmouDwdgTD08wU5yr+7r8UCaYRvxQtNOIJ9MJ\nBs/rZe2lA2QH0kwcmubY/WNMHi9p+vIGtessJgP+HnjI3f9ygTaDwJS7zwK/AnzLaw5BiUh3yfY9\nMxbRsyZLImGk8ynWPLePk48WGX5kYsGL6cpzVcb2FZkrVZa1GNH0oTIn9xabek0ym6B4dIbR/ZMk\nMgkK63INX+x3JpaTtRG5wTQ9q6JdyKld10H8MPCLwH1mdne47T3AuQDu/nHgEuDTZlYBHgTe0qZs\nIrJMfRvzDD8ywdSJmafXfUhlkqy+uI+x/VOUp+sPEieThiUTjD81RSqXIJFo7mBGdZYF+16ImdF3\nTo6ZYpLi0RInHy+SyiXpXZcjW4juo3A5WRvqtzf6j++2FAh3/zbBdTWLtfkusK0decaemmIugn8w\niO6qyajEKW+cskK88p5J1snhGcYPTbN6Wx82b+qLRHrhD/7+zXlG9haZGS/Tu7a5RYUstXjfi8kP\nZckNZpgZm2PyWImJQ1PM9KboWZt9Vv5WqFZ80bO7lmt2MvpTeVfkldQi0jq9a7OM7ptkeqS5tavT\n+RTZvnSwWt2qDIlk++YONTNygxmyA2mmT84ydbzE6L5oVpksHaowEsEhpv7NPay6INqzo1ZkgdCV\n1M+IU944ZYV45T3TrJneNOVShVUXFZqaQG/g3B6OPzBGti/d1ER+rf7ZVitVZotlohi7Pph+lPOv\nbv0lXakznNOqofeI/B1E5KzXtzHH8MOnj0U0onZRod51WVKZ6D/06kkkE+QGohmwThcS5NswGB4F\nrQchImcsW0iT6UtTPFJacsqN+bSoUPdSgRCRlujbmAuuizje3BTnTy8qNKxFhbqNCoSItES2kCbb\nn6Z4ZLrpvYjChhxmxsSh1k3kJ2dOBUJEWqawIUe17E3vRSRTCXrX5yiNzGom1i6iAiEiLXNGexHr\nsyRSxkQLpwOXM6MCISIt1bcxv6y9iEQyQeGcPDPjc8xM1J/HSdpLBUJEWirTm1r2XkQUiwrJ8uk6\nCBFpub6NeU7sGefY/WNYk19Dp0fnKB6eZnpklmxf/Y+o4hNljq4ZbUHS6EWVtXdtjsL65qYoaZYK\nhIi0XKY3Rd+m/LImqUv3JClPlZmdmKOwPlt3UaFkzsi0YbK6Vogq60KLMrVSPH7CIhI7fefkl/3a\n/FCWkb1FcgOZuvM75fcnGTq/u1ZpW0icss6nMQgR6TrtWlRIFqcCISJdqW9Tnspslckmz4aS1lGB\nEJGulOsP53c63PzZUNIaKhAi0rX6NwXXVEwe1UR+naACISJdK9ObIjeYoXi0FMmqbLI4FQgR6Wp9\nG3N4xSke0V5Eu6lAiEhXS+dT5FdnmTo+Q2VOexHtpAIhIl2vb2MOd9d04G2mAiEiXU+LCnWGCoSI\nxIIWFWo/TbUhIrFwalGh4uFpJveVOfbAWKcjNSSqrD1rspqsT0TklML6LNW5KokMpPLJTsdpSFRZ\nNVmfiEiNRDLB4Hm95J9IseqCeEyAl38yPlnn0xiEiIjUpQIhIiJ1qUCIiEhdKhAiIlKXCoSIiNSl\nAiEiInWpQIiISF0qECIiUpfFeUFwMzsO7O90jnnWACc6HaIJccobp6wQr7xxygrxytuNWc9z97VL\nNYp1gehGZnanu1/Z6RyNilPeOGWFeOWNU1aIV944ZZ1Ph5hERKQuFQgREalLBaL1/q7TAZoUp7xx\nygrxyhunrBCvvHHKehqNQYiISF3agxARkbpUIEREpC4ViBYxsy1mtsvMHjKzB8zsHZ3OtBQzS5rZ\n983sK53OshQzGzSzm81sT/gzfkmnMy3EzH4r/B2438w+b2bRrgvZJDP7BzM7Zmb312xbZWa3mtmj\n4Z9Dncx4ygJZ/yz8PbjXzL5kZoOdzFirXt6a595lZm5mazqRbTlUIFqnDPy2u18CXAW8zcwu7XCm\npbwDeKjTIRr0MeCr7v5c4Aq6NLeZbQLeDlzp7pcBSeDnO5vqWT4FXD9v2+8CX3f3bcDXw8fd4FM8\nO+utwGXufjnwCPB77Q61iE/x7LyY2Rbgx4An2x3oTKhAtIi7H3b3u8L7EwQfYJs6m2phZrYZ+Eng\nk53OshQz6wd+BPh7AHefdffRzqZaVArIm1kK6AEOdTjPadz9W8DJeZtfBdwU3r8JeHVbQy2gXlZ3\n/5q7l8OHtwOb2x5sAQv8bAH+CvifQKzOClKBiICZbQVeAPxXZ5Ms6qMEv7DVTgdpwAXAceAfw0Ni\nnzSz3k6HqsfdDwJ/TvBN8TAw5u5f62yqhqx398MQfNkB1nU4T6PeDPx7p0MsxsxeCRx093s6naVZ\nKhAtZmYF4F+B/+Hu453OU4+Z/RRwzN13dzpLg1LAC4G/dfcXAJN0zyGQ04TH7l8FnA9sBHrN7I2d\nTXV2MrP3Ehza/VynsyzEzHqA9wLv73SW5VCBaCEzSxMUh8+5+xc7nWcRPwy80sz2ATuBa8zss52N\ntKgDwAF3P7VHdjNBwehG1wFPuPtxd58Dvgj8UIczNeKomW0ACP881uE8izKzNwE/BbzBu/tirgsJ\nvizcE/5/2wzcZWbndDRVg1QgWsTMjOAY+UPu/pedzrMYd/89d9/s7lsJBlC/4e5d+y3X3Y8AT5nZ\nxeGma4EHOxhpMU8CV5lZT/g7cS1dOqA+zy3Am8L7bwL+rYNZFmVm1wPvBl7p7lOdzrMYd7/P3de5\n+9bw/9sB4IXh73TXU4FonR8GfpHg2/jd4e0VnQ51FvlN4HNmdi/wfOCPOpynrnAv52bgLuA+gv9j\nXTXVgpl9HvgucLGZHTCztwB/DPyYmT1KcLbNH3cy4ykLZP3fQB9wa/j/7OMdDVljgbyxpak2RESk\nLu1BiIhIXSoQIiJSlwqEiIjUpQIhIiJ1qUCIiEhdKhAiIlKXCoSIiNSlAiGxEs6n/xc1j99lZh9o\nQb9b683hHwUze3u4psUZzSFkZsV690VaRQVC4mYGeE23LbpigUb/P/068Ap3f0OUmUTOlAqExE2Z\nYOqK36rdOH8P4NSeRbh9TzhF+P1m9jkzu87M/jNcPe0Ha7pJmdlN4UplN4czcWJmbzSzO8JpHT5h\nZsma93zIzP6GYGqNLfMyvTN8z/vN7H+E2z5OMH35LWZ22t8hfP6Xwve/x8w+E277spnttmCVuhsW\n++GYWa+Z/d/w9feb2evqtPmSmX3YzP7DzI6Y2XWL9SkrlwqExNGNwBvMbKDB9hcRrEh3OfBc4PXA\n1cC7gPfUtLsY+LtwpbJx4NfN7BLgdcAPu/vzgQrwhnmv+bS7v8Dd95/aaGbbgV8GXkywwuCvmtkL\n3P3XCBYQ2uHuf1Ub0syeRzA19DXufgXBin8Ab3b37cCVwNvNbPUif9frgUPufkW4ot1X67S5DBh1\n95cS7M1oT0bqUoGQ2AnX2fg0wdKejXginFWzCjxAsLSmE0ymt7Wm3VPu/p/h/c8SFJFrge3A98zs\n7vDxBTWv2e/ut9d5z6uBL7n7pLsXCab9fukSOa8Bbnb3E+Hf89TKZG83s3sIVk/bAmxbpI/7gOvM\n7E/M7KXuPlb7ZLhXNECwwhkEa2108+p80kGpTgcQWaaPEhzW+cfwcZnTv/Dkau7P1Nyv1jyucvr/\ngfkzVzpgwE3uvtC6x5MLbLcFti/G5mcws5cRrDHxEnefMrPbOP3vdhp3fyTce3kF8BEz+5q7f6im\nyfOA3e5eCR9fDrRlcF7iR3sQEkvht+svAKemUz4KrDOz1WaWJVhMplnnmtlLwvu/AHwb+DrwWjNb\nB2Bmq8zsvAb6+hbw6nBdiF7gZ4D/WOI1Xwd+7tQhJDNbRfBtfyQsDs8lOFy1IDPbCEy5+2cJlj6d\nv7DSZcDdNY8vB+5t4O8jK5D2ICTO/gL4DQB3nzOzDxGsA/4EsGcZ/T0EvMnMPgE8SrDE6ZSZvQ/4\nWniW0hzwNmD/Iv3g7neZ2aeAO8JNn3T37y/xmgfM7A+Bb5pZBfg+8N+BXwvXwXiY4DDTYn4A+DMz\nq4ZZ31rn+dq10i9DexCyAK0HISIidekQk4iI1KUCISIidalAiIhIXSoQIiJSlwqEiIjUpQIhIiJ1\nqUCIiEhd/x/dxbqNL7tbiwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plot_convergence(gbm_results)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/hyperspace/.ropeproject/config.py b/hyperspace/.ropeproject/config.py deleted file mode 100644 index 45e1fb4..0000000 --- a/hyperspace/.ropeproject/config.py +++ /dev/null @@ -1,103 +0,0 @@ -# The default ``config.py`` -# flake8: noqa - - -def set_prefs(prefs): - """This function is called before opening the project""" - - # Specify which files and folders to ignore in the project. - # Changes to ignored resources are not added to the history and - # VCSs. Also they are not returned in `Project.get_files()`. - # Note that ``?`` and ``*`` match all characters but slashes. - # '*.pyc': matches 'test.pyc' and 'pkg/test.pyc' - # 'mod*.pyc': matches 'test/mod1.pyc' but not 'mod/1.pyc' - # '.svn': matches 'pkg/.svn' and all of its children - # 'build/*.o': matches 'build/lib.o' but not 'build/sub/lib.o' - # 'build//*.o': matches 'build/lib.o' and 'build/sub/lib.o' - prefs['ignored_resources'] = [ - '*.pyc', '*~', '.ropeproject', '.hg', '.svn', '_svn', - '.git', '.tox', '.env', 'env', 'venv', 'node_modules', - 'bower_components' - ] - - # Specifies which files should be considered python files. It is - # useful when you have scripts inside your project. Only files - # ending with ``.py`` are considered to be python files by - # default. - #prefs['python_files'] = ['*.py'] - - # Custom source folders: By default rope searches the project - # for finding source folders (folders that should be searched - # for finding modules). You can add paths to that list. Note - # that rope guesses project source folders correctly most of the - # time; use this if you have any problems. - # The folders should be relative to project root and use '/' for - # separating folders regardless of the platform rope is running on. - # 'src/my_source_folder' for instance. - #prefs.add('source_folders', 'src') - - # You can extend python path for looking up modules - #prefs.add('python_path', '~/python/') - - # Should rope save object information or not. - prefs['save_objectdb'] = True - prefs['compress_objectdb'] = False - - # If `True`, rope analyzes each module when it is being saved. - prefs['automatic_soa'] = True - # The depth of calls to follow in static object analysis - prefs['soa_followed_calls'] = 0 - - # If `False` when running modules or unit tests "dynamic object - # analysis" is turned off. This makes them much faster. - prefs['perform_doa'] = True - - # Rope can check the validity of its object DB when running. - prefs['validate_objectdb'] = True - - # How many undos to hold? - prefs['max_history_items'] = 32 - - # Shows whether to save history across sessions. - prefs['save_history'] = True - prefs['compress_history'] = False - - # Set the number spaces used for indenting. According to - # :PEP:`8`, it is best to use 4 spaces. Since most of rope's - # unit-tests use 4 spaces it is more reliable, too. - prefs['indent_size'] = 4 - - # Builtin and c-extension modules that are allowed to be imported - # and inspected by rope. - prefs['extension_modules'] = [] - - # Add all standard c-extensions to extension_modules list. - prefs['import_dynload_stdmods'] = True - - # If `True` modules with syntax errors are considered to be empty. - # The default value is `False`; When `False` syntax errors raise - # `rope.base.exceptions.ModuleSyntaxError` exception. - prefs['ignore_syntax_errors'] = False - - # If `True`, rope ignores unresolvable imports. Otherwise, they - # appear in the importing namespace. - prefs['ignore_bad_imports'] = False - - # If `True`, rope will insert new module imports as - # `from import ` by default. - prefs['prefer_module_from_imports'] = False - - # If `True`, rope will transform a comma list of imports into - # multiple separate import statements when organizing - # imports. - prefs['split_imports'] = False - - # If `True`, rope will sort imports alphabetically by module name - # instead of alphabetically by import statement, with from imports - # after normal imports. - prefs['sort_imports_alphabetically'] = False - - -def project_opened(project): - """This function is called after opening the project""" - # Do whatever you like here! diff --git a/hyperspace/.ropeproject/globalnames b/hyperspace/.ropeproject/globalnames deleted file mode 100644 index 0a47446..0000000 Binary files a/hyperspace/.ropeproject/globalnames and /dev/null differ diff --git a/hyperspace/.ropeproject/history b/hyperspace/.ropeproject/history deleted file mode 100644 index 4490a5d..0000000 Binary files a/hyperspace/.ropeproject/history and /dev/null differ diff --git a/hyperspace/.ropeproject/objectdb b/hyperspace/.ropeproject/objectdb deleted file mode 100644 index 0a47446..0000000 Binary files a/hyperspace/.ropeproject/objectdb and /dev/null differ