forked from wavesaudio/Speex-AEC-matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
speex_mdf.m
690 lines (578 loc) · 23.9 KB
/
speex_mdf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
% Copyright (C) 2012 Waves Audio LTD
% Copyright (C) 2003-2008 Jean-Marc Valin
%
% File: speex_mdf.m
% Echo canceller based on the MDF algorithm (see below)
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in the
% documentation and/or other materials provided with the distribution.
%
% 3. The name of the author may not be used to endorse or promote products
% derived from this software without specific prior written permission.
%
% THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
% IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
% OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
% DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
% INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
% (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
% SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
% HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
% STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
% ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
%
% Notes from original mdf.c:
%
% The echo canceller is based on the MDF algorithm described in:
%
% J. S. Soo, K. K. Pang Multidelay block frequency adaptive filter,
% IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-38, No. 2,
% February 1990.
%
% We use the Alternatively Updated MDF (AUMDF) variant. Robustness to
% double-talk is achieved using a variable learning rate as described in:
%
% Valin, J.-M., On Adjusting the Learning Rate in Frequency Domain Echo
% Cancellation With Double-Talk. IEEE Transactions on Audio,
% Speech and Language Processing, Vol. 15, No. 3, pp. 1030-1034, 2007.
% http://people.xiph.org/~jm/papers/valin_taslp2006.pdf
%
% There is no explicit double-talk detection, but a continuous variation
% in the learning rate based on residual echo, double-talk and background
% noise.
%
% Another kludge that seems to work good: when performing the weight
% update, we only move half the way toward the "goal" this seems to
% reduce the effect of quantization noise in the update phase. This
% can be seen as applying a gradient descent on a "soft constraint"
% instead of having a hard constraint.
%
% Notes for this file:
%
% Usage:
%
% speex_mdf_out = speex_mdf(Fs, u, d, filter_length, frame_size, dbg_var_name);
%
% Fs sample rate
% u speaker signal, column vector in range [-1; 1]
% d microphone signal, column vector in range [-1; 1]
% filter_length typically 250ms, i.e. 4096 @ 16k FS
% must be a power of 2
% frame_size typically 8ms, i.e. 128 @ 16k Fs
% must be a power of 2
% dbg_var_name internal state variable name to trace.
% Default: 'st.leak_estimate'.
%
% Jonathan Rouach <[email protected]>
%
function speex_mdf_out = speex_mdf(Fs, u, d, filter_length, frame_size, dbg_var_name)
fprintf('Starting Speex MDF (PBFDAF) algorithm.\n');
st = speex_echo_state_init_mc_mdf(frame_size, filter_length, 1, 1, Fs);
% which variable to trace
if nargin<6
dbg_var_name = 'st.leak_estimate';
end
dbg = init_dbg(st, length(u));
[e, dbg] = main_loop(st, float_to_short(u), float_to_short(d), dbg);
speex_mdf_out.e = e/32768.0;
speex_mdf_out.var1 = dbg.var1;
function x = float_to_short(x)
x = x*32768.0;
x(x< -32767.5) = -32768;
x(x> 32766.5) = 32767;
x = floor(0.5+x);
end
function [e, dbg] = main_loop(st, u, d, dbg)
e = zeros(size(u));
y = zeros(size(u));
% prepare waitbar
try h_wb = waitbar(0, 'Processing...'); catch; end
end_point = length(u);
for n = 1:st.frame_size:end_point
nStep = floor(n/st.frame_size)+1;
if mod(nStep, 128)==0 && update_waitbar_check_wasclosed(h_wb, n, end_point, st.sampling_rate)
break;
end
u_frame = u(n:n+st.frame_size-1);
d_frame = d(n:n+st.frame_size-1);
[out, st] = speex_echo_cancellation_mdf(st, d_frame, u_frame);
e(n:n+st.frame_size-1) = out;
y(n:n+st.frame_size-1) = d_frame - out;
dbg.var1(:, nStep) = reshape( eval(dbg_var_name), numel(eval(dbg_var_name)), 1);
end
try close(h_wb); catch; end
end
function st = speex_echo_state_init_mc_mdf(frame_size, filter_length, nb_mic, nb_speakers, sample_rate)
st.K = nb_speakers;
st.C = nb_mic;
C=st.C;
K=st.K;
st.frame_size = frame_size;
st.window_size = 2*frame_size;
N = st.window_size;
st.M = fix((filter_length+st.frame_size-1)/frame_size);
M = st.M;
st.cancel_count=0;
st.sum_adapt = 0;
st.saturated = 0;
st.screwed_up = 0;
% /* This is the default sampling rate */
st.sampling_rate = sample_rate;
st.spec_average = (st.frame_size)/( st.sampling_rate);
st.beta0 = (2.0*st.frame_size)/st.sampling_rate;
st.beta_max = (.5*st.frame_size)/st.sampling_rate;
st.leak_estimate = 0;
st.e = zeros(N, C);
st.x = zeros(N, K);
st.input = zeros(st.frame_size, C);
st.y = zeros(N, C);
st.last_y = zeros(N, C);
st.Yf = zeros(st.frame_size+1, 1);
st.Rf = zeros(st.frame_size+1, 1);
st.Xf = zeros(st.frame_size+1, 1);
st.Yh = zeros(st.frame_size+1, 1);
st.Eh = zeros(st.frame_size+1, 1);
st.X = zeros(N, K, M+1);
st.Y = zeros(N, C);
st.E = zeros(N, C);
st.W = zeros(N, K, M, C);
st.foreground = zeros(N, K, M, C);
st.PHI = zeros(frame_size+1, 1);
st.power = zeros(frame_size+1, 1);
st.power_1 = ones((frame_size+1), 1);
st.window = zeros(N, 1);
st.prop = zeros(M, 1);
st.wtmp = zeros(N, 1);
st.window = .5-.5*cos(2*pi*((1:N)'-1)/N);
% /* Ratio of ~10 between adaptation rate of first and last block */
decay = exp(-2.4/M);
st.prop(1, 1) = .7;
for i=2:M
st.prop(i, 1) = st.prop(i-1, 1) * decay;
end
st.prop = (.8 * st.prop)./sum(st.prop);
st.memX = zeros(K, 1);
st.memD = zeros(C, 1);
st.memE = zeros(C, 1);
st.preemph = .9;
if (st.sampling_rate<12000)
st.notch_radius = .9;
elseif (st.sampling_rate<24000)
st.notch_radius = .982;
else
st.notch_radius = .992;
end
st.notch_mem = zeros(2*C, 1);
st.adapted = 0;
st.Pey = 1;
st.Pyy = 1;
st.Davg1 = 0; st.Davg2 = 0;
st.Dvar1 = 0; st.Dvar2 = 0;
end
function dbg = init_dbg(st, len)
dbg.var1 = zeros(numel(eval(dbg_var_name)), fix(len/st.frame_size));
end
function [out, st] = speex_echo_cancellation_mdf(st, in, far_end)
N = st.window_size;
M = st.M;
C = st.C;
K = st.K;
Pey_cur = 1;
Pyy_cur = 1;
out = zeros(st.frame_size, C);
st.cancel_count = st.cancel_count + 1;
ss=.35/M;
ss_1 = 1-ss;
for chan = 1:C
% Apply a notch filter to make sure DC doesn't end up causing problems
[st.input(:, chan), st.notch_mem(:, chan)] = filter_dc_notch16(in(:, chan), st.notch_radius, st.frame_size, st.notch_mem(:, chan));
% Copy input data to buffer and apply pre-emphasis
for i=1:st.frame_size
tmp32 = st.input(i, chan)- (st.preemph* st.memD(chan));
st.memD(chan) = st.input(i, chan);
st.input(i, chan) = tmp32;
end
end
for speak = 1:K
for i =1:st.frame_size
st.x(i, speak) = st.x(i+st.frame_size, speak);
tmp32 = far_end(i, speak) - st.preemph * st.memX(speak);
st.x(i+st.frame_size, speak) = tmp32;
st.memX(speak) = far_end(i, speak);
end
end
% Shift memory
st.X = circshift(st.X, [0, 0, 1]);
for speak = 1:K
% Convert x (echo input) to frequency domain
% MATLAB_MATCH: we divide by N to get values as in speex
st.X(:, speak, 1) = fft(st.x(:, speak)) /N;
end
Sxx = 0;
for speak = 1:K
Sxx = Sxx + sum(st.x(st.frame_size+1:end, speak).^2);
st.Xf = abs(st.X(1:st.frame_size+1, speak, 1)).^2;
end
Sff = 0;
for chan = 1:C
% Compute foreground filter
st.Y(:, chan) = 0;
for speak=1:K
for j=1:M
st.Y(:, chan) = st.Y(:, chan) + st.X(:, speak, j) .* st.foreground(:, speak, j, chan);
end
end
% MATLAB_MATCH: we multiply by N to get values as in speex
st.e(:, chan) = ifft(st.Y(:, chan)) * N;
st.e(1:st.frame_size, chan) = st.input(:, chan) - st.e(st.frame_size+1:end, chan);
% st.e : [out foreground | leak foreground ]
Sff = Sff + sum(abs(st.e(1:st.frame_size, chan)).^2);
end
% Adjust proportional adaption rate */
if (st.adapted)
st.prop = mdf_adjust_prop (st.W, N, M, C, K);
end
% Compute weight gradient */
if (st.saturated == 0)
for chan = 1:C
for speak = 1:K
for j=M:-1:1
st.PHI = [st.power_1; st.power_1(end-1:-1:2)] .* st.prop(j) .* conj(st.X(:, speak, (j+1))) .* st.E(:, chan);
st.W(:, j) = st.W(:, j) + st.PHI;
end
end
end
else
st.saturated = st.saturated -1;
end
%FIXME: MC conversion required */
% Update weight to prevent circular convolution (MDF / AUMDF)
for chan = 1:C
for speak = 1:K
for j = 1:M
% This is a variant of the Alternatively Updated MDF (AUMDF) */
% Remove the "if" to make this an MDF filter */
if (j==1 || mod(2+st.cancel_count,(M-1)) == j)
st.wtmp = ifft(st.W(:, speak, j, chan));
st.wtmp(st.frame_size+1:N) = 0;
st.W(:, speak, j, chan) = fft(st.wtmp);
end
end
end
end
% So we can use power_spectrum_accum */
st.Yf = zeros(st.frame_size+1, 1);
st.Rf = zeros(st.frame_size+1, 1);
st.Xf = zeros(st.frame_size+1, 1);
Dbf = 0;
for chan = 1:C
st.Y(:, chan) = 0;
for speak=1:K
for j=1:M
st.Y(:, chan) = st.Y(:, chan) + st.X(:, speak, j) .* st.W(:, speak, j, chan);
end
end
% MATLAB_MATCH: we multiply by N to get values as in speex
st.y(:,chan) = ifft(st.Y(:,chan)) * N;
% st.y : [ ~ | leak background ]
end
See = 0;
% Difference in response, this is used to estimate the variance of our residual power estimate */
for chan = 1:C
st.e(1:st.frame_size, chan) = st.e(st.frame_size+1:N, chan) - st.y(st.frame_size+1:N, chan);
Dbf = Dbf + 10 + sum(abs(st.e(1:st.frame_size, chan)).^2);
st.e(1:st.frame_size, chan) = st.input(:, chan) - st.y(st.frame_size+1:N, chan);
% st.e : [ out background | leak foreground ]
See = See + sum(abs(st.e(1:st.frame_size, chan)).^2);
end
% Logic for updating the foreground filter */
% For two time windows, compute the mean of the energy difference, as well as the variance */
VAR1_UPDATE = .5;
VAR2_UPDATE = .25;
VAR_BACKTRACK = 4;
MIN_LEAK = .005;
st.Davg1 = .6*st.Davg1 + .4*(Sff-See);
st.Davg2 = .85*st.Davg2 + .15*(Sff-See);
st.Dvar1 = .36*st.Dvar1 + .16*Sff*Dbf;
st.Dvar2 = .7225*st.Dvar2 + .0225*Sff*Dbf;
update_foreground = 0;
% Check if we have a statistically significant reduction in the residual echo */
% Note that this is *not* Gaussian, so we need to be careful about the longer tail */
if (Sff-See)*abs(Sff-See) > (Sff*Dbf)
update_foreground = 1;
elseif (st.Davg1* abs(st.Davg1) > (VAR1_UPDATE*st.Dvar1))
update_foreground = 1;
elseif (st.Davg2* abs(st.Davg2) > (VAR2_UPDATE*(st.Dvar2)))
update_foreground = 1;
end
% Do we update? */
if (update_foreground)
st.Davg1 = 0;
st.Davg2 = 0;
st.Dvar1 = 0;
st.Dvar2 = 0;
st.foreground = st.W;
% Apply a smooth transition so as to not introduce blocking artifacts */
for chan = 1:C
st.e(st.frame_size+1:N, chan) = (st.window(st.frame_size+1:N) .* st.e(st.frame_size+1:N, chan)) + (st.window(1:st.frame_size) .* st.y(st.frame_size+1:N, chan));
end
else
reset_background=0;
% Otherwise, check if the background filter is significantly worse */
if (-(Sff-See)*abs(Sff-See)> VAR_BACKTRACK*(Sff*Dbf))
reset_background = 1;
end
if ((-st.Davg1 * abs(st.Davg1))> (VAR_BACKTRACK*st.Dvar1))
reset_background = 1;
end
if ((-st.Davg2* abs(st.Davg2))> (VAR_BACKTRACK*st.Dvar2))
reset_background = 1;
end
if (reset_background)
% Copy foreground filter to background filter */
st.W = st.foreground;
% We also need to copy the output so as to get correct adaptation */
for chan = 1:C
st.y(st.frame_size+1:N, chan) = st.e(st.frame_size+1:N, chan);
st.e(1:st.frame_size, chan) = st.input(:, chan) - st.y(st.frame_size+1:N, chan);
end
See = Sff;
st.Davg1 = 0;
st.Davg2 = 0;
st.Dvar1 = 0;
st.Dvar2 = 0;
end
end
Sey = 0;
Syy = 0;
Sdd = 0;
for chan = 1:C
% Compute error signal (for the output with de-emphasis) */
for i=1:st.frame_size
tmp_out = st.input(i, chan)- st.e(i+st.frame_size, chan);
tmp_out = tmp_out + st.preemph * st.memE(chan);
% This is an arbitrary test for saturation in the microphone signal */
if (in(i,chan) <= -32000 || in(i,chan) >= 32000)
if (st.saturated == 0)
st.saturated = 1;
end
end
out(i, chan) = tmp_out;
st.memE(chan) = tmp_out;
end
% Compute error signal (filter update version) */
st.e(st.frame_size+1:N, chan) = st.e(1:st.frame_size, chan);
st.e(1:st.frame_size, chan) = 0;
% st.e : [ zeros | out background ]
% Compute a bunch of correlations */
% FIXME: bad merge */
Sey = Sey + sum(st.e(st.frame_size+1:N, chan) .* st.y(st.frame_size+1:N, chan));
Syy = Syy + sum(st.y(st.frame_size+1:N, chan).^2);
Sdd = Sdd + sum(st.input.^2);
% Convert error to frequency domain */
% MATLAB_MATCH: we divide by N to get values as in speex
st.E = fft(st.e) / N;
st.y(1:st.frame_size, chan) = 0;
% MATLAB_MATCH: we divide by N to get values as in speex
st.Y = fft(st.y) / N;
% Compute power spectrum of echo (X), error (E) and filter response (Y) */
st.Rf = abs(st.E(1:st.frame_size+1,chan)).^2;
st.Yf = abs(st.Y(1:st.frame_size+1,chan)).^2;
end
% Do some sanity check */
if (~(Syy>=0 && Sxx>=0 && See >= 0))
% Things have gone really bad */
st.screwed_up = st.screwed_up + 50;
out = out*0;
elseif Sff > Sdd+ N*10000
% AEC seems to add lots of echo instead of removing it, let's see if it will improve */
st.screwed_up = st.screwed_up + 1;
else
% Everything's fine */
st.screwed_up=0;
end
if (st.screwed_up>=50)
disp('Screwed up, full reset');
st = speex_echo_state_reset_mdf(st);
end
% Add a small noise floor to make sure not to have problems when dividing */
See = max(See, N* 100);
for speak = 1:K
Sxx = Sxx + sum(st.x(st.frame_size+1:end, speak).^2);
st.Xf = abs(st.X(1:st.frame_size+1, speak, 1)).^2;
end
% Smooth far end energy estimate over time */
st.power = ss_1*st.power+ 1 + ss*st.Xf;
% Compute filtered spectra and (cross-)correlations */
Eh_cur = st.Rf - st.Eh;
Yh_cur = st.Yf - st.Yh;
Pey_cur = Pey_cur + sum(Eh_cur.*Yh_cur) ;
Pyy_cur = Pyy_cur + sum(Yh_cur.^2);
st.Eh = (1-st.spec_average)*st.Eh + st.spec_average*st.Rf;
st.Yh = (1-st.spec_average)*st.Yh + st.spec_average*st.Yf;
Pyy = sqrt(Pyy_cur);
Pey = Pey_cur/Pyy;
% Compute correlation updatete rate */
tmp32 = st.beta0*Syy;
if (tmp32 > st.beta_max*See)
tmp32 = st.beta_max*See;
end
alpha = tmp32/ See;
alpha_1 = 1- alpha;
% Update correlations (recursive average) */
st.Pey = alpha_1*st.Pey + alpha*Pey;
st.Pyy = alpha_1*st.Pyy + alpha*Pyy;
if st.Pyy<1
st.Pyy =1;
end
% We don't really hope to get better than 33 dB (MIN_LEAK-3dB) attenuation anyway */
if st.Pey< MIN_LEAK * st.Pyy
st.Pey = MIN_LEAK * st.Pyy;
end
if (st.Pey> st.Pyy)
st.Pey = st.Pyy;
end
% leak_estimate is the linear regression result */
st.leak_estimate = st.Pey/st.Pyy;
% This looks like a stupid bug, but it's right (because we convert from Q14 to Q15) */
if (st.leak_estimate > 16383)
st.leak_estimate = 32767;
end
% Compute Residual to Error Ratio */
RER = (.0001*Sxx + 3.*st.leak_estimate*Syy) / See;
% Check for y in e (lower bound on RER) */
if (RER < Sey*Sey/(1+See*Syy))
RER = Sey*Sey/(1+See*Syy);
end
if (RER > .5)
RER = .5;
end
% We consider that the filter has had minimal adaptation if the following is true*/
if (~st.adapted && st.sum_adapt > M && st.leak_estimate*Syy > .03*Syy)
st.adapted = 1;
end
if (st.adapted)
% Normal learning rate calculation once we're past the minimal adaptation phase */
for i=1:st.frame_size+1
% Compute frequency-domain adaptation mask */
r = st.leak_estimate*st.Yf(i);
e = st.Rf(i)+1;
if (r>.5*e)
r = .5*e;
end
r = 0.7*r + 0.3*(RER*e);
%st.power_1[i] = adapt_rate*r/(e*(1+st.power[i]));*/
st.power_1(i) = (r/(e*st.power(i)+10));
end
else
% Temporary adaption rate if filter is not yet adapted enough */
adapt_rate=0;
if (Sxx > N* 1000)
tmp32 = 0.25* Sxx;
if (tmp32 > .25*See)
tmp32 = .25*See;
end
adapt_rate = tmp32/ See;
end
st.power_1 = adapt_rate./(st.power+10);
% How much have we adapted so far? */
st.sum_adapt = st.sum_adapt+adapt_rate;
end
% FIXME: MC conversion required */
st.last_y(1:st.frame_size) = st.last_y(st.frame_size+1:N);
if (st.adapted)
% If the filter is adapted, take the filtered echo */
st.last_y(st.frame_size+1:N) = in-out;
end
end
function [out,mem] = filter_dc_notch16(in, radius, len, mem)
out = zeros(size(in));
den2 = radius*radius + .7*(1-radius)*(1-radius);
for i=1:len
vin = in(i);
vout = mem(1) + vin;
mem(1) = mem(2) + 2*(-vin + radius*vout);
mem(2) = vin - (den2*vout);
out(i) = radius*vout;
end
end
function prop = mdf_adjust_prop(W, N, M, C, K)
prop = zeros(M,1);
for i=1:M
tmp = 1;
for chan=1:C
for speak=1:K
tmp = tmp + sum(abs(W(1:N/2+1, K, i, C)).^2);
end
end
prop(i) = sqrt(tmp);
end
max_sum = max(prop, 1);
prop = prop + .1*max_sum;
prop_sum = 1+sum(prop);
prop = .99*prop / prop_sum;
end
% Resets echo canceller state */
function st = speex_echo_state_reset_mdf(st)
st.cancel_count=0;
st.screwed_up = 0;
N = st.window_size;
M = st.M;
C=st.C;
K=st.K;
st.e = zeros(N, C);
st.x = zeros(N, K);
st.input = zeros(st.frame_size, C);
st.y = zeros(N, C);
st.last_y = zeros(N, C);
st.Yf = zeros(st.frame_size+1, 1);
st.Rf = zeros(st.frame_size+1, 1);
st.Xf = zeros(st.frame_size+1, 1);
st.Yh = zeros(st.frame_size+1, 1);
st.Eh = zeros(st.frame_size+1, 1);
st.X = zeros(N, K, M+1);
st.Y = zeros(N, C);
st.E = zeros(N, C);
st.W = zeros(N, K, M, C);
st.foreground = zeros(N, K, M, C);
st.PHI = zeros(N, 1);
st.power = zeros(st.frame_size+1, 1);
st.power_1 = ones((st.frame_size+1), 1);
st.window = zeros(N, 1);
st.prop = zeros(M, 1);
st.wtmp = zeros(N, 1);
st.memX = zeros(K, 1);
st.memD = zeros(C, 1);
st.memE = zeros(C, 1);
st.saturated = 0;
st.adapted = 0;
st.sum_adapt = 0;
st.Pey = 1;
st.Pyy = 1;
st.Davg1 = 0;
st.Davg2 = 0;
st.Dvar1 = 0;
st.Dvar2 = 0;
end
function was_closed = update_waitbar_check_wasclosed(h, n, end_point, Fs)
was_closed = 0;
% update waitbar
try
waitbar(n/end_point, h, ['Processing... ', num2str(n/Fs, '%.2f'), 's / ', num2str(end_point/Fs, '%.2f'), 's' ]);
catch ME
% if it's no longer there (closed by user)
if (strcmp(ME.identifier(1:length('MATLAB:waitbar:')), 'MATLAB:waitbar:'))
was_closed = 1; % then get out of the loop
end
end
end
end