-
Notifications
You must be signed in to change notification settings - Fork 3
/
pre_train.py
239 lines (193 loc) · 8.27 KB
/
pre_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from gym_torcs import TorcsEnv
import numpy as np
import random
import argparse
from keras.models import model_from_json, Model
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.optimizers import Adam
import tensorflow as tf
from keras.engine.training import collect_trainable_weights
import json
from ReplayBuffer import ReplayBuffer
from ActorNetworkPreTraining import ActorNetwork # use a modified class
from CriticNetwork import CriticNetwork
from OU import OU
import timeit
import signal
import sys
import time
PI= 3.14159265359
OU = OU() #Ornstein-Uhlenbeck Process
class DriverExample(object):
'''What the driver is intending to do (i.e. send to the server).
Composes something like this for the server:
(accel 1)(brake 0)(gear 1)(steer 0)(clutch 0)(focus 0)(meta 0) or
(accel 1)(brake 0)(gear 1)(steer 0)(clutch 0)(focus -90 -45 0 45 90)(meta 0)'''
def __init__(self):
self.actionstr= unicode()
# "d" is for data dictionary.
self.R= { 'accel':0.2,
'brake':0,
'clutch':0,
'gear':1,
'steer':0,
'focus':[-90,-45,0,45,90],
'meta':0
}
def action(self, s_t):
'''This is only an example. It will get around the track but the
correct thing to do is write your own `drive()` function.'''
target_speed=100
# S: angle, track (19), trackPos, speedX, speedY, speedZ, wheelSpinVel/100.0 (4), rpm
S = {}
# value are processed in gym_torcs.py/make_observation while these are not processed
# in snakeoil3_gym.py. The controller we use is from snakeoil3_gym.py
# Thus, revert back.
S['angle'] = s_t[0] * 3.1416
S['trackPos'] = s_t[20]
S['speedX'] = s_t[21] * 300.
S['wheelSpinVel'] = s_t[24:28]
# Steer To Corner
self.R['steer'] = S['angle']*10 / PI
# Steer To Center
self.R['steer'] -= S['trackPos']*.10
# Throttle Control
if S['speedX'] < target_speed - (self.R['steer']*50):
self.R['accel'] += .01
else:
self.R['accel'] -= .01
if S['speedX']<10:
self.R['accel'] += 1/(S['speedX']+.1)
# Traction Control System
if ((S['wheelSpinVel'][2]+S['wheelSpinVel'][3]) -
(S['wheelSpinVel'][0]+S['wheelSpinVel'][1]) > 5):
self.R['accel']-= .2
self.clip_to_limits() # get rid of absurd values
print("------------------------------------------")
print("angle: ", S['angle'], "speedX: ", S['speedX'], "trackPos: ", S['trackPos'])
print("steer: ", self.R['steer'], "accel: ", self.R['accel'], "brake: ", self.R['brake'])
return [self.R['steer'], self.R['accel'], self.R['brake']]
def clip(self,v,lo,hi):
if v<lo: return lo
elif v>hi: return hi
else: return v
def clip_to_limits(self):
self.R['steer']= self.clip(self.R['steer'], -1, 1)
self.R['brake']= self.clip(self.R['brake'], 0, 1)
self.R['accel']= self.clip(self.R['accel'], 0, 1)
def preTrain(): # train the NN of actor and ciritc using existing rules
BUFFER_SIZE = 100000
BATCH_SIZE = 32
GAMMA = 0.99
TAU = 0.001 #Target Network HyperParameters
LRA = 0.0001 #Learning rate for Actor
LRC = 0.001 #Lerning rate for Critic
action_dim = 3 #Steering/Acceleration/Brake
state_dim = 29 #of sensors input
np.random.seed(1337)
vision = False
episode_count = 2000
max_steps = 100000
reward = 0
done = False
step = 0
#Tensorflow GPU optimization
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
from keras import backend as K
K.set_session(sess)
actor = ActorNetwork(sess, state_dim, action_dim, BATCH_SIZE, TAU, LRA)
critic = CriticNetwork(sess, state_dim, action_dim, BATCH_SIZE, TAU, LRC)
buff = ReplayBuffer(BUFFER_SIZE) #Create replay buffer
# Generate a Torcs environment
env = TorcsEnv(vision=vision, throttle=True,gear_change=False)
# Generate a driver
driver = DriverExample()
#Now load the weight
print("Now we load the weight")
try:
actor.model.load_weights("pre_actormodel.h5")
critic.model.load_weights("pre_criticmodel.h5")
actor.target_model.load_weights("pre_actormodel.h5")
critic.target_model.load_weights("pre_criticmodel.h5")
print("Weight load successfully")
except:
print("Cannot find the weight")
print("TORCS Experiment Start.")
for i in range(episode_count):
print("Episode : " + str(i) + " Replay Buffer " + str(buff.count()))
if np.mod(i, 3) == 0:
ob = env.reset(relaunch=True) #relaunch TORCS every 3 episode because of the memory leak error
else:
ob = env.reset()
s_t = np.hstack((ob.angle, ob.track, ob.trackPos, ob.speedX, ob.speedY, ob.speedZ, ob.wheelSpinVel/100.0, ob.rpm))
total_reward = 0.
for j in range(max_steps):
loss_actor = 0
loss_critic = 0
a_t = np.zeros([1,action_dim])
# the driver produce the actions
a_t = driver.action(s_t.reshape(state_dim, ))
ob, r_t, done, info = env.step(a_t)
s_t1 = np.hstack((ob.angle, ob.track, ob.trackPos, ob.speedX, ob.speedY, ob.speedZ, ob.wheelSpinVel/100.0, ob.rpm))
buff.add(s_t, a_t, r_t, s_t1, done) #Add replay buffer
#Do the batch update
batch = buff.getBatch(BATCH_SIZE)
states = np.asarray([e[0] for e in batch])
actions = np.asarray([e[1] for e in batch])
rewards = np.asarray([e[2] for e in batch])
new_states = np.asarray([e[3] for e in batch])
dones = np.asarray([e[4] for e in batch])
y_t = np.asarray([e[1] for e in batch])
target_q_values = critic.target_model.predict([new_states, actor.target_model.predict(new_states)])
for k in range(len(batch)):
if dones[k]:
y_t[k] = rewards[k]
else:
y_t[k] = rewards[k] + GAMMA*target_q_values[k]
"""
if (train_indicator == 1):
loss += critic.model.train_on_batch([states,actions], y_t)
a_for_grad = actor.model.predict(states)
grads = critic.gradients(states, a_for_grad)
actor.train(states, grads)
actor.target_train()
critic.target_train()
"""
loss_actor += actor.model.train_on_batch(states, actions) # train actor
loss_critic += critic.model.train_on_batch([states,actions], y_t) # train critic
actor.target_train()
critic.target_train()
total_reward += r_t
s_t = s_t1
print("Episode", i, "Step", step, ": ")
print("Action", a_t, "Reward", r_t)
print("loss_actor", loss_actor, "loss_critic", loss_critic)
step += 1
if np.mod(step, 100) == 0:
print("Now we save model")
actor.model.save_weights("pre_actormodel.h5", overwrite=True)
with open("pre_actormodel.json", "w") as outfile:
json.dump(actor.model.to_json(), outfile)
critic.model.save_weights("pre_criticmodel.h5", overwrite=True)
with open("pre_criticmodel.json", "w") as outfile:
json.dump(critic.model.to_json(), outfile)
if done:
break
print("TOTAL REWARD @ " + str(i) +"-th Episode : Reward " + str(total_reward))
print("Total Step: " + str(step))
print("")
env.end() # This is for shutting down TORCS
print("Finish.")
def signal_handler(signal, frame):
print('You pressed Ctrl+C!')
# Generate a Torcs environment
env = TorcsEnv(vision=False, throttle=True, gear_change=False)
env.end()
sys.exit(0)
if __name__ == "__main__":
# if ctrl c is pressed, close env too
signal.signal(signal.SIGINT, signal_handler)
preTrain()