forked from youngfish42/Awesome-FL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.yaml
8070 lines (8070 loc) · 498 KB
/
data.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
section:
- title: fl-on-graph-data-and-graph-neural-network
- title: private-graph-neural-networks
- title: fl-on-tabular-data
- title: fl-in-top-tier-journal
- title: fl-in-top-ai-conference-and-journal
- title: fl-in-top-ml-conference-and-journal
- title: fl-in-top-dm-conference-and-journal
- title: fl-in-top-secure-conference-and-journal
- title: fl-in-top-cv-conference-and-journal
- title: fl-in-top-nlp-conference-and-journal
- title: fl-in-top-ir-conference-and-journal
- title: fl-in-top-db-conference-and-journal
- title: fl-in-top-network-conference-and-journal
- title: fl-in-top-system-conference-and-journal
- title: federated-learning-framework
fl-on-graph-data-and-graph-neural-network:
header:
title: 'Title '
affiliation: ' Affiliation '
venue: ' Venue '
year: ' Year '
tldr: ' TL;DR '
materials: ' Materials'
length:
title: 60
affiliation: 22
venue: 4
year: 60
tldr: 60
materials: 60
body:
- title: 'FedWalk: Communication Efficient Federated Unsupervised Node Embedding
with Differential Privacy'
affiliation: SJTU
venue: 'KDD :mortar_board:'
year: '2022'
tldr: 'FedWalk: FedWalk, a random-walk-based unsupervised node embedding algorithm
that operates in such a node-level visibility graph with raw graph information
remaining locally. FedWalk,一个基于随机行走的无监督节点嵌入算法,在这样一个节点级可见度图中操作,原始图信息保留在本地。'
materials:
PUB: https://dl.acm.org/doi/10.1145/3534678.3539308
PDF: https://arxiv.org/abs/2205.15896
- title: 'FederatedScope-GNN: Towards a Unified, Comprehensive and Efficient Platform
for Federated Graph Learning :fire:'
affiliation: Alibaba
venue: 'KDD (Best Paper Award) :mortar_board:'
year: '2022'
tldr: 'FederatedScope-GNN: FederatedScope-GNN present an easy-to-use FGL (federated
graph learning) package. FederatedScope-GNN提出了一个易于使用的FGL(联邦图学习)软件包。'
materials:
PDF: https://arxiv.org/abs/2204.05562
CODE: https://github.com/alibaba/FederatedScope
PUB: https://dl.acm.org/doi/10.1145/3534678.3539112
- title: Deep Neural Network Fusion via Graph Matching with Applications to Model
Ensemble and Federated Learning
affiliation: SJTU
venue: 'ICML :mortar_board:'
year: '2022'
tldr: 'GAMF: GAMF formulate the model fusion problem as a graph matching task,
considering the second-order similarity of model weights instead of previous
work merely formulating model fusion as a linear assignment problem. For the
rising problem scale and multi-model consistency issues, GAMF propose an efficient
graduated assignment-based model fusion method, iteratively updates the matchings
in a consistency-maintaining manner. GAMF将模型融合问题表述为图形匹配任务,考虑了模型权重的二阶相似性,而不是之前的工作仅仅将模型融合表述为一个线性赋值问题。针对问题规模的扩大和多模型的一致性问题,GAMF提出了一种高效的基于分级赋值的模型融合方法,以保持一致性的方式迭代更新匹配结果。'
materials:
PUB.: https://proceedings.mlr.press/v162/liu22k/liu22k.pdf
CODE: https://github.com/Thinklab-SJTU/GAMF
- title: Meta-Learning Based Knowledge Extrapolation for Knowledge Graphs in the
Federated Setting **`kg.`**
affiliation: ZJU
venue: 'IJCAI :mortar_board:'
year: '2022'
tldr: 'MaKEr: We study the knowledge extrapolation problem to embed new components
(i.e., entities and relations) that come with emerging knowledge graphs (KGs)
in the federated setting. In this problem, a model trained on an existing KG
needs to embed an emerging KG with unseen entities and relations. To solve this
problem, we introduce the meta-learning setting, where a set of tasks are sampled
on the existing KG to mimic the link prediction task on the emerging KG. Based
on sampled tasks, we meta-train a graph neural network framework that can construct
features for unseen components based on structural information and output embeddings
for them. 我们研究了知识外推问题,以嵌入新的组件(即实体和关系),这些组件来自于联邦设置的新兴知识图(KGs)。在这个问题上,一个在现有KG上训练的模型需要嵌入一个带有未见过的实体和关系的新兴KG。为了解决这个问题,我们引入了元学习设置,在这个设置中,一组任务在现有的KG上被抽样,以模拟新兴KG上的链接预测任务。基于抽样任务,我们对图神经网络框架进行元训练,该框架可以根据结构信息为未见过的组件构建特征,并为其输出嵌入。'
materials:
PUB: https://www.ijcai.org/proceedings/2022/273
PDF: https://doi.org/10.48550/arXiv.2205.04692
CODE: https://github.com/zjukg/maker
- title: Personalized Federated Learning With a Graph
affiliation: UTS
venue: 'IJCAI :mortar_board:'
year: '2022'
tldr: 'SFL: A novel structured federated learning (SFL) framework to enhance the
knowledge-sharing process in PFL by leveraging the graph-based structural information
among clients and learn both the global and personalized models simultaneously
using client-wise relation graphs and clients'' private data. We cast SFL with
graph into a novel optimization problem that can model the client-wise complex
relations and graph-based structural topology by a unified framework. Moreover,
in addition to using an existing relation graph, SFL could be expanded to learn
the hidden relations among clients. 一个新的结构化联邦学习(SFL)框架通过利用客户之间基于图的结构信息来加强PFL中的知识共享过程,并使用客户的关系图和客户的私人数据同时学习全局和个性化的模型。我们把带图的SFL变成一个新的优化问题,它可以通过一个统一的框架对客户的复杂关系和基于图的结构拓扑进行建模。此外,除了使用现有的关系图之外,SFL还可以扩展到学习客户之间的隐藏关系。'
materials:
PUB: https://www.ijcai.org/proceedings/2022/357
PDF: https://arxiv.org/abs/2203.00829
CODE: https://github.com/dawenzi098/SFL-Structural-Federated-Learning
- title: Vertically Federated Graph Neural Network for Privacy-Preserving Node Classification
affiliation: ZJU
venue: 'IJCAI :mortar_board:'
year: '2022'
tldr: 'VFGNN: VFGNN, a federated GNN learning paradigm for privacy-preserving
node classification task under data vertically partitioned setting, which can
be generalized to existing GNN models. Specifically, we split the computation
graph into two parts. We leave the private data (i.e., features, edges, and
labels) related computations on data holders, and delegate the rest of computations
to a semi-honest server. We also propose to apply differential privacy to prevent
potential information leakage from the server. VFGNN是一种联邦的GNN学习范式,适用于数据纵向分割情况下的隐私保护节点分类任务,它可以被推广到现有的GNN模型。具体来说,我们将计算图分成两部分。我们将私有数据(即特征、边和标签)相关的计算留给数据持有者,并将其余的计算委托给半诚实的服务器。我们还提议应用差分隐私来防止服务器的潜在信息泄露。'
materials:
PUB: https://www.ijcai.org/proceedings/2022/272
PDF: https://arxiv.org/abs/2005.11903
- title: 'SpreadGNN: Decentralized Multi-Task Federated Learning for Graph Neural
Networks on Molecular Data'
affiliation: USC
venue: 'AAAI:mortar_board:'
year: '2022'
tldr: 'SpreadGNN: SpreadGNN, a novel multi-task federated training framework capable
of operating in the presence of partial labels and absence of a central server
for the first time in the literature. We provide convergence guarantees and
empirically demonstrate the efficacy of our framework on a variety of non-I.I.D.
distributed graph-level molecular property prediction datasets with partial
labels. SpreadGNN首次提出一个新颖的多任务联邦训练框架,能够在存在部分标签和没有中央服务器的情况下运行。我们提供了收敛保证,并在各种具有部分标签的非I.I.D.分布式图级分子特性预测数据集上实证了我们框架的功效。我们的研究结果表明,SpreadGNN优于通过依赖中央服务器的联邦学习系统训练的GNN模型,即使在受限的拓扑结构中也是如此。'
materials:
PUB: https://ojs.aaai.org/index.php/AAAI/article/view/20643
PDF: https://arxiv.org/abs/2106.02743
CODE: https://github.com/FedML-AI/SpreadGNN
解读: https://zhuanlan.zhihu.com/p/429720860
- title: 'FedGraph: Federated Graph Learning with Intelligent Sampling'
affiliation: UoA
venue: 'TPDS :mortar_board:'
year: '2022'
tldr: 'FedGraph: FedGraph for federated graph learning among multiple computing
clients, each of which holds a subgraph. FedGraph provides strong graph learning
capability across clients by addressing two unique challenges. First, traditional
GCN training needs feature data sharing among clients, leading to risk of privacy
leakage. FedGraph solves this issue using a novel cross-client convolution operation.
The second challenge is high GCN training overhead incurred by large graph size.
We propose an intelligent graph sampling algorithm based on deep reinforcement
learning, which can automatically converge to the optimal sampling policies
that balance training speed and accuracy. FedGraph 用于多个计算客户端之间的联邦图学习,每个客户端都有一个子图。FedGraph通过解决两个独特的挑战,跨客户端提供了强大的图形学习能力。首先,传统的GCN训练需要在客户之间进行功能数据共享,从而导致隐私泄露的风险。FedGraph使用一种新的跨客户端卷积操作来解决了这个问题。第二个挑战是大图所产生的高GCN训练开销。提出了一种基于深度强化学习的智能图采样算法,该算法可以自动收敛到最优的平衡训练速度和精度的采样策略。'
materials:
PUB.: https://ieeexplore.ieee.org/abstract/document/9606516/
CODE: https://github.com/cfh19980612/FedGraph
解读: https://zhuanlan.zhihu.com/p/442233479
- title: 'FedGCN: Convergence and Communication Tradeoffs in Federated Training
of Graph Convolutional Networks'
affiliation: CMU
venue: CIKM Workshop (Oral)
year: '2022'
tldr: 'FedGCN: TBC'
materials:
PDF: https://arxiv.org/abs/2201.12433
CODE: https://github.com/yh-yao/FedGCN
- title: 'FedNI: Federated Graph Learning with Network Inpainting for Population-Based
Disease Prediction'
affiliation: UESTC
venue: TMI
year: '2022'
tldr: 'FedNI: FedNI, to leverage network inpainting and inter-institutional data
via FL. Specifically, we first federatively train missing node and edge predictor
using a graph generative adversarial network (GAN) to complete the missing information
of local networks. Then we train a global GCN node classifier across institutions
using a federated graph learning platform. The novel design enables us to build
more accurate machine learning models by leveraging federated learning and also
graph learning approaches. FedNI,通过 FL 来利用网络补全和机构间数据。 具体来说,我们首先使用图生成对抗网络(GAN)对缺失节点和边缘预测器进行联邦训练,以完成局部网络的缺失信息。
然后,我们使用联邦图学习平台跨机构训练全局 GCN 节点分类器。 新颖的设计使我们能够通过利用联邦学习和图学习方法来构建更准确的机器学习模型。'
materials:
PUB: https://ieeexplore.ieee.org/document/9815303
PDF: https://arxiv.org/abs/2112.10166
- title: 'FedEgo: Privacy-preserving Personalized Federated Graph Learning with
Ego-graphs'
affiliation: SYSU
venue: TOIS
year: '2022'
tldr: 'FedEgo: FedEgo, a federated graph learning framework based on ego-graphs,
where each client will train their local models while also contributing to the
training of a global model. FedEgo applies GraphSAGE over ego-graphs to make
full use of the structure information and utilizes Mixup for privacy concerns.
To deal with the statistical heterogeneity, we integrate personalization into
learning and propose an adaptive mixing coefficient strategy that enables clients
to achieve their optimal personalization. FedEgo是一个基于自中心图的联邦图学习框架,每个客户端将训练他们的本地模型,同时也为全局模型的训练作出贡献。FedEgo在自中心图上应用GraphSAGE来充分利用结构信息,并利用Mixup来解决隐私问题。为了处理统计上的异质性,我们将个性化整合到学习中,并提出了一个自适应混合系数策略,使客户能够实现其最佳的个性化。'
materials:
PUB.: https://arxiv.org/abs/2208.13685
CODE: https://github.com/fedego/fedego
- title: A federated graph neural network framework for privacy-preserving personalization
affiliation: THU
venue: Nature Communications
year: '2022'
tldr: 'FedPerGNN: FedPerGNN, a federated GNN framework for both effective and
privacy-preserving personalization. Through a privacy-preserving model update
method, we can collaboratively train GNN models based on decentralized graphs
inferred from local data. To further exploit graph information beyond local
interactions, we introduce a privacy-preserving graph expansion protocol to
incorporate high-order information under privacy protection. FedPerGNN是一个既有效又保护隐私的GNN联盟框架。通过一个保护隐私的模型更新方法,我们可以根据从本地数据推断出的分散图来协作训练GNN模型。为了进一步利用本地互动以外的图信息,我们引入了一个保护隐私的图扩展协议,在保护隐私的前提下纳入高阶信息。'
materials:
PUB: https://www.nature.com/articles/s41467-022-30714-9
CODE: https://github.com/wuch15/FedPerGNN
解读: https://zhuanlan.zhihu.com/p/487383715
- title: 'SemiGraphFL: Semi-supervised Graph Federated Learning for Graph Classification.'
affiliation: PKU
venue: PPSN
year: '2022'
tldr: 'SemiGraphFL: This work focuses on the graph classification task with partially
labeled data. (1) Enhancing the collaboration processes: We propose a new personalized
FL framework to deal with Non-IID data. Clients with more similar data have
greater mutual influence, where the similarities can be evaluated via unlabeled
data. (2) Enhancing the local training process: We introduce auxiliary loss
for unlabeled data that restrict the training process. We propose a new pseudo-label
strategy for our SemiGraphFL framework to make more effective predictions. 这项工作专注于具有部分标记数据的图分类任务。(1)
加强合作过程。我们提出了一个新的个性化的FL框架来处理非IID数据。拥有更多相似数据的客户有更大的相互影响,其中的相似性可以通过未标记的数据进行评估。(2)
加强本地训练过程。我们为未标记的数据引入了辅助损失,限制了训练过程。我们为我们的SemiGraphFL框架提出了一个新的伪标签策略,以做出更有效的预测。'
materials:
PUB: https://link.springer.com/chapter/10.1007/978-3-031-14714-2_33
- title: Efficient Federated Learning on Knowledge Graphs via Privacy-preserving
Relation Embedding Aggregation **`kg.`**
affiliation: Lehigh University
venue: ACL Workshop
year: '2022'
tldr: 'FedR: In this paper, we first develop a novel attack that aims to recover
the original data based on embedding information, which is further used to evaluate
the vulnerabilities of FedE. Furthermore, we propose a Federated learning paradigm
with privacy-preserving Relation embedding aggregation (FedR) to tackle the
privacy issue in FedE. Compared to entity embedding sharing, relation embedding
sharing policy can significantly reduce the communication cost due to its smaller
size of queries. 在本文中,我们首先开发了一个新颖的攻击,旨在基于嵌入信息恢复原始数据,并进一步用于评估FedE的漏洞。此外,我们提出了一种带有隐私保护的关系嵌入聚合(FedR)的联邦学习范式,以解决FedE的隐私问题。与实体嵌入共享相比,关系嵌入共享策略由于其较小的查询规模,可以大大降低通信成本。'
materials:
PDF: https://arxiv.org/abs/2203.09553
CODE: https://github.com/taokz/FedR
- title: Power Allocation for Wireless Federated Learning using Graph Neural Networks
affiliation: Rice University
venue: ICASSP
year: '2022'
tldr: 'wirelessfl-pdgnet: A data-driven approach for power allocation in the context
of federated learning (FL) over interference-limited wireless networks. The
power policy is designed to maximize the transmitted information during the
FL process under communication constraints, with the ultimate objective of improving
the accuracy and efficiency of the global FL model being trained. The proposed
power allocation policy is parameterized using a graph convolutional network
and the associated constrained optimization problem is solved through a primal-dual
algorithm. 在干扰有限的无线网络上联邦学习(FL)的背景下,一种数据驱动的功率分配方法。功率策略的设计是为了在通信约束下的联邦学习过程中最大化传输信息,其最终目的是提高正在训练的全局联邦学习模型的准确性和效率。所提出的功率分配策略使用图卷积网络进行参数化,相关的约束性优化问题通过原始-双重算法进行解决。'
materials:
PUB: https://ieeexplore.ieee.org/document/9747764
PDF: https://arxiv.org/abs/2111.07480
CODE: https://github.com/bl166/wirelessfl-pdgnet
- title: 'Privacy-Preserving Federated Multi-Task Linear Regression: A One-Shot
Linear Mixing Approach Inspired By Graph Regularization'
affiliation: UC
venue: ICASSP
year: '2022'
tldr: 'multitask-fusion: We investigate multi-task learning (MTL), where multiple
learning tasks are performed jointly rather than separately to leverage their
similarities and improve performance. We focus on the federated multi-task linear
regression setting, where each machine possesses its own data for individual
tasks and sharing the full local data between machines is prohibited. Motivated
by graph regularization, we propose a novel fusion framework that only requires
a one-shot communication of local estimates. Our method linearly combines the
local estimates to produce an improved estimate for each task, and we show that
the ideal mixing weight for fusion is a function of task similarity and task
difficulty. 我们研究了多任务学习(MTL),其中多个学习任务被关联而不是单独执行,以利用它们的相似性并提高性能。我们专注于联邦多任务线性回归的设置,其中每台机器拥有自己的个别任务的数据,并且禁止在机器之间共享完整的本地数据。在图正则化的启发下,我们提出了一个新的融合框架,只需要一次本地估计的交流。我们的方法线性地结合本地估计,为每个任务产生一个改进的估计,我们表明,融合的理想混合权重是任务相似性和任务难度的函数。'
materials:
PUB: https://ieeexplore.ieee.org/document/9746007
PDF: https://www.math.ucla.edu/~harlin/papers/mtl.pdf
CODE: https://github.com/HarlinLee/multitask-fusion
- title: Federated knowledge graph completion via embedding-contrastive learning
**`kg.`**
affiliation: ZJU
venue: Knowl. Based Syst.
year: '2022'
tldr: 'FedEC: FedEC framework, a local training procedure is responsible for learning
knowledge graph embeddings on each client based on a specific embedding learner.
We apply embedding-contrastive learning to limit the embedding update for tackling
data heterogeneity. Moreover, a global update procedure is used for sharing
and averaging entity embeddings on the master server. 在FedEC框架中,一个本地训练程序负责在每个客户端上基于特定的嵌入学习者学习知识图的嵌入。我们应用嵌入对比学习来限制嵌入的更新,以解决数据的异质性问题。此外,全局更新程序被用于共享和平均主服务器上的实体嵌入。'
materials:
PUB: https://www.sciencedirect.com/science/article/abs/pii/S0950705122007316?via%3Dihub
- title: Federated Graph Learning with Periodic Neighbour Sampling
affiliation: HKU
venue: IWQoS
year: '2022'
tldr: 'PNS-FGL: Existing FL paradigms are inefficient for geo-distributed GCN
training since neighbour sampling across geo-locations will soon dominate the
whole training process and consume large WAN bandwidth. We derive a practical
federated graph learning algorithm, carefully striking the trade-off among GCN
convergence error, wall-clock runtime, and neighbour sampling interval. Our
analysis is divided into two cases according to the budget for neighbour sampling.
In the unconstrained case, we obtain the optimal neighbour sampling interval,
that achieves the best trade-off between convergence and runtime; in the constrained
case, we show that determining the optimal sampling interval is actually an
online problem and we propose a novel online algorithm with bounded competitive
ratio to solve it. Combining the two cases, we propose a unified algorithm to
decide the neighbour sampling interval in federated graph learning, and demonstrate
its effectiveness with extensive simulation over graph datasets. 现有的FL范式对于地理分布式的GCN训练是低效的,因为跨地理位置的近邻采样很快将主导整个训练过程,并消耗大量的广域网带宽。我们推导了一个实用的联邦图学习算法,仔细权衡了GCN收敛误差、wall
- clock运行时间和近邻采样间隔。我们的分析根据邻居抽样的预算分为两种情况。在无约束的情况下,我们得到了最优的近邻采样间隔,实现了收敛性和运行时间的最佳折衷;在有约束的情况下,我们证明了确定最优采样间隔实际上是一个在线问题,并提出了一个新的有界竞争比的在线算法来解决这个问题。结合这两种情况,我们提出了一个统一的算法来决定联邦图学习中的近邻采样间隔,并通过在图数据集上的大量仿真证明了其有效性'
materials:
PUB: https://ieeexplore.ieee.org/document/9812908
- title: A Privacy-Preserving Subgraph-Level Federated Graph Neural Network via
Differential Privacy
affiliation: Ping An Technology
venue: KSEM
year: '2022'
tldr: 'DP-FedRec: The DP-based federated GNN has not been well investigated, especially
in the sub-graph-level setting, such as the scenario of recommendation system.
DP-FedRec, a DP-based federated GNN to fill the gap. Private Set Intersection
(PSI) is leveraged to extend the local graph for each client, and thus solve
the non-IID problem. Most importantly, DP(differential privacy) is applied not
only on the weights but also on the edges of the intersection graph from PSI
to fully protect the privacy of clients. 基于DP的联邦GNN还没有得到很好的研究,特别是在子图层面的设置,如推荐系统的场景。DP-FedRec,一个基于DP的联盟式GNN来填补这一空白。隐私集合求交(PSI)被用来扩展每个客户端的本地图,从而解决非IID问题。最重要的是,DP(差分隐私)不仅适用于权重,也适用于PSI中交集图的边,以充分保护客户的隐私。'
materials:
PUB: https://link.springer.com/chapter/10.1007/978-3-031-10989-8_14
PDF: https://arxiv.org/abs/2206.03492
- title: Graph-Based Traffic Forecasting via Communication-Efficient Federated Learning
affiliation: SUSTech
venue: WCNC
year: '2022'
tldr: 'CTFL: C lustering-based hierarchical and T wo-step- optimized FL (CTFL)
employs a divide-and-conquer strategy, clustering clients based on the closeness
of their local model parameters. Furthermore, we incorporate the particle swarm
optimization algorithm in CTFL, which employs a two-step strategy for optimizing
local models. This technique enables the central server to upload only one representative
local model update from each cluster, thus reducing the communication overhead
associated with model update transmission in the FL. 基于聚类的层次化和两步优化的FL ( CTFL
)采用分治策略,根据本地模型参数的接近程度对客户端进行聚类。此外,我们将粒子群优化算法集成到CTFL中,该算法采用两步策略优化局部模型。此技术使中心服务器能够仅从每个集群上载一个有代表性的本地模型更新,从而减少与FL中模型更新传输相关的通信开销。'
materials:
PUB: https://ieeexplore.ieee.org/document/9771883
- title: Federated meta-learning for spatial-temporal prediction
affiliation: NEU
venue: Neural Comput. Appl.
year: '2022'
tldr: 'FML-ST: A privacy-preserving spatial-temporal prediction technique via
federated learning (FL). Due to inherent non-independent identically distributed
(non-IID) characteristic of spatial-temporal data, the basic FL-based method
cannot deal with this data heterogeneity well by sharing global model; furthermore,
we propose the personalized federated learning methods based on meta-learning.
We automatically construct the global spatial-temporal pattern graph under a
data federation. This global pattern graph incorporates and memorizes the local
learned patterns of all of the clients, and each client leverages those global
patterns to customize its own model by evaluating the difference between global
and local pattern graph. Then, each client could use this customized parameters
as its model initialization parameters for spatial-temporal prediction tasks.
一种通过联邦学习(FL)保护隐私的时空预测技术。由于时空数据固有的非独立同分布(non-IID)特性,基本的基于FL的方法无法通过共享全局模型很好地处理这种数据异构性;此外,我们提出了基于元学习的个性化联邦学习方法。我们在数据联邦下自动构建全局时空模式图。这个全局模式图包含并记忆了所有客户机的本地学习模式,每个客户机利用这些全局模式通过评估全局模式图和本地模式图之间的差异来定制自己的模型。然后,每个客户端可以使用这个定制的参数作为其时空预测任务的模型初始化参数。'
materials:
PUB: https://link.springer.com/article/10.1007/s00521-021-06861-3
CODE: https://github.com/lwz001/FML-ST
- title: 'BiG-Fed: Bilevel Optimization Enhanced Graph-Aided Federated Learning'
affiliation: NTU
venue: IEEE Transactions on Big Data
year: '2022'
tldr: 'BiG-Fed: We investigate FL scenarios in which data owners are related by
a network topology (e.g., traffic prediction based on sensor networks). Existing
personalized FL approaches cannot take this information into account. To address
this limitation, we propose the Bilevel Optimization enhanced Graph-aided Federated
Learning (BiG-Fed) approach. The inner weights enable local tasks to evolve
towards personalization, and the outer shared weights on the server side target
the non-i.i.d problem enabling individual tasks to evolve towards a global constraint
space. To the best of our knowledge, BiG-Fed is the first bilevel optimization
technique to enable FL approaches to cope with two nested optimization tasks
at the FL server and FL clients simultaneously. 我们研究了数据所有者与网络拓扑相关的 FL 场景(例如,基于传感器网络的流量预测)。
现有的个性化 FL 方法无法将这些信息考虑在内。 为了解决这个限制,我们提出了双层优化增强的图形辅助联邦学习(BiG-Fed)方法。 内部权重使本地任务向个性化发展,而服务器端的外部共享权重针对非独立同分布问题,使单个任务向全局约束空间发展。
据我们所知,BiG-Fed 是第一个使 FL 方法能够同时处理 FL 服务器和 FL 客户端的两个嵌套优化任务的双层优化技术。'
materials:
PUB: https://ieeexplore.ieee.org/abstract/document/9832778
PDF: https://fl-icml.github.io/2021/papers/FL-ICML21_paper_74.pdf
- title: Malicious Transaction Identification in Digital Currency via Federated
Graph Deep Learning
affiliation: BIT
venue: INFOCOM Workshops
year: '2022'
tldr: 'GraphSniffer: A graph neural network model based on federated learning
named GraphSniffer to identify malicious transactions in the digital currency
market. GraphSniffer leverages federated learning and graph neural networks
to model graph-structured Bitcoin transaction data distributed at different
worker nodes, and transmits the gradients of the local model to the server node
for aggregation to update the parameters of the global model. GraphSniffer 一种基于联邦学习的图神经网络模型来识别数字货币市场中的恶意交易。GraphSniffer
利用联邦学习和图神经网络对分布在不同工作节点的图结构比特币交易数据进行建模,并将局部模型的梯度传递到服务器节点进行聚合,更新全局模型的参数。'
materials:
PUB: https://ieeexplore.ieee.org/document/9797992/
- title: Leveraging Spanning Tree to Detect Colluding Attackers in Federated Learning
affiliation: Missouri S&T
venue: INFCOM Workshops
year: '2022'
tldr: 'FL-ST: We explore the threat of collusion attacks from multiple malicious
clients who pose targeted attacks (e.g., label flipping) in a federated learning
configuration. By leveraging client weights and the correlation among them,
we develop a graph-based algorithm to detect malicious clients. 我们探讨了来自多个恶意客户的串通攻击的威胁,这些客户在联邦学习配置中提出了有针对性的攻击(例如,标签翻转)。通过利用客户端的权重和它们之间的关联性,我们开发了一种基于图的算法来检测恶意客户端。'
materials:
PUB: https://ieeexplore.ieee.org/document/9798077
- title: Federated learning of molecular properties with graph neural networks in
a heterogeneous setting
affiliation: University of Rochester
venue: Patterns
year: '2022'
tldr: 'FLITplus: Federated learning allows end users to build a global model collaboratively
while keeping their training data isolated. We first simulate a heterogeneous
federated-learning benchmark (FedChem) by jointly performing scaffold splitting
and latent Dirichlet allocation on existing datasets. Our results on FedChem
show that significant learning challenges arise when working with heterogeneous
molecules across clients. We then propose a method to alleviate the problem:
Federated Learning by Instance reweighTing (FLIT+). FLIT+ can align local training
across clients. Experiments conducted on FedChem validate the advantages of
this method. 联邦学习允许最终用户协同构建全局模型,同时保持他们的训练数据是孤立的。我们首先通过在现有数据集上联邦执行支架拆分和隐狄利克雷分配来模拟一个异构的联邦学习基准FedChem
。我们在FedChem上的研究结果表明,在跨客户端处理异构分子时,会出现显著的学习挑战。然后,我们提出了一种缓解该问题的方法:实例重加权联邦学习FLIT
+ 。FLIT+可以跨客户对齐本地训练。在FedChem上进行的实验验证了这种方法的优势。'
materials:
PUB: https://linkinghub.elsevier.com/retrieve/pii/S2666389922001180
PDF: https://arxiv.org/abs/2109.07258
CODE: https://doi.org/10.5281/zenodo.6485682
- title: Multi-Level Federated Graph Learning and Self-Attention Based Personalized
Wi-Fi Indoor Fingerprint Localization
affiliation: SYSU
venue: IEEE Commun. Lett.
year: '2022'
tldr: 'ML-FGL: Deep learning-based Wi-Fi indoor fingerprint localization, which
requires a large received signal strength (RSS) dataset for training. A multi-level
federated graph learning and self-attention based personalized indoor localization
method is proposed to further capture the intrinsic features of RSS(received
signal strength), and learn the aggregation manner of shared information uploaded
by clients, with better personalization accuracy. 基于深度学习的Wi-Fi室内指纹定位,需要一个大的接收信号强度(
RSS )数据集进行训练。为了进一步捕获RSS(接收信号强度)的内在特征,学习客户端上传的共享信息的聚合方式,具有更好的个性化精度,提出了一种基于多级联邦图学习和自注意力机制的个性化室内定位方法。'
materials:
PUB: https://ieeexplore.ieee.org/document/9734052
- title: Decentralized Graph Federated Multitask Learning for Streaming Data
affiliation: NTNU
venue: CISS
year: '2022'
tldr: 'PSO-GFML: This paper proposes a decentralized online multitask learning
algorithm based on GFL (O-GFML). Clients update their local models using continuous
streaming data while clients and multiple servers can train different but related
models simul-taneously. Furthermore, to enhance the communication efficiency
of O-GFML, we develop a partial-sharing-based O-GFML (PSO-GFML). The PSO-GFML
allows participating clients to exchange only a portion of model parameters
with their respective servers during a global iteration, while non-participating
clients update their local models if they have access to new data. 本文提出了一种基于GFL
(O-GFML)的去中心化在线多任务学习算法。客户端使用连续的流数据更新本地模型,而客户端和多个服务器可以同时训练不同但相关的模型。此外,为了提高O-GFML的通信效率,我们开发了一种基于部分共享的O-GFML
(PSO-GFML)。PSO-GFML允许参与的客户端在全局迭代过程中只与各自的服务器交换部分模型参数,而非参与的客户端在有机会获得新数据的情况下更新本地模型。'
materials:
PUB.: https://doi.org/10.1109/CISS53076.2022.9751160
- title: Dynamic Neural Graphs Based Federated Reptile for Semi-Supervised Multi-Tasking
in Healthcare Applications
affiliation: Oxford
venue: JBHI
year: '2022'
tldr: 'DNG-FR: AI healthcare applications rely on sensitive electronic healthcare records
(EHRs) that are scarcely labelled and are often distributed across a network
of the symbiont institutions. In this work, we propose dynamic neural graphs
based federated learning framework to address these challenges. The proposed
framework extends Reptile , a model agnostic meta-learning (MAML) algorithm,
to a federated setting. However, unlike the existing MAML algorithms, this
paper proposes a dynamic variant of neural graph learning (NGL) to incorporate
unlabelled examples in the supervised training setup. Dynamic NGL computes
a meta-learning update by performing supervised learning on a labelled training
example while performing metric learning on its labelled or unlabelled neighbourhood.
This neighbourhood of a labelled example is established dynamically using local
graphs built over the batches of training examples. Each local graph is constructed
by comparing the similarity between embedding generated by the current state
of the model. The introduction of metric learning on the neighbourhood makes
this framework semi-supervised in nature. The experimental results on the publicly
available MIMIC-III dataset highlight the effectiveness of the proposed framework
for both single and multi-task settings under data decentralisation constraints
and limited supervision. 人工智能医疗应用依赖于敏感的电子医疗记录( EHR ),这些记录几乎没有标签,而且往往分布在共生体机构的网络中。在这项工作中,我们提出了基于动态神经图的联邦学习框架来解决这些挑战。提出的框架将模型不可知元学习(MAML)算法Reptile扩展到联邦环境。然而,与现有的MAML算法不同,本文提出了神经图学习(Neural
Graph Learning,NGL 的动态变体,以在有监督的训练设置中纳入未标记的示例。动态NGL通过对带标签的训练示例执行监督学习,同时对其带标签或未带标签的邻域执行度量学习来计算元学习更新。标记样本的这个邻域是使用在批量训练样本上建立的局部图动态建立的。通过比较由模型的当前状态生成的嵌入之间的相似性来构造每个局部图。在邻域上引入度量学习使得这个框架具有半监督的性质。'
materials:
PUB.: https://ieeexplore.ieee.org/document/9648036
- title: 'FedGCN: Federated Learning-Based Graph Convolutional Networks for Non-Euclidean
Spatial Data'
affiliation: NUIST
venue: Mathematics
year: '2022'
tldr: 'FedGCN-NES: A Federated Learning-Based Graph Convolutional Network (FedGCN).
First, we propose a Graph Convolutional Network (GCN) as a local model of FL.
Based on the classical graph convolutional neural network, TopK pooling layers
and full connection layers are added to this model to improve the feature extraction
ability. Furthermore, to prevent pooling layers from losing information, cross-layer
fusion is used in the GCN, giving FL an excellent ability to process non-Euclidean
spatial data. Second, in this paper, a federated aggregation algorithm based
on an online adjustable attention mechanism is proposed. The trainable parameter
ρ is introduced into the attention mechanism. The aggregation method assigns
the corresponding attention coefficient to each local model, which reduces the
damage caused by the inefficient local model parameters to the global model
and improves the fault tolerance and accuracy of the FL algorithm. 基于联邦学习的图卷积网络(Fedgcn)。首先,我们提出了一个图卷积网络(GCN)作为FL的局部模型。该模型在经典图卷积神经网络的基础上,增加了Top
K池化层和全连接层,提高了特征提取能力。此外,为了防止池化层丢失信息,在GCN中使用跨层融合,使FL具有处理非欧几里得空间数据的出色能力。其次,本文提出了一种基于在线可调注意力机制的联邦聚合算法。可训练参数ρ被引入注意力机制。聚合方法为每个局部模型分配相应的注意力系数,减少了低效的局部模型参数对全局模型造成的破坏,提高了FL算法的容错性和准确性。'
materials:
PUB: https://www.mdpi.com/2227-7390/10/6/1000
- title: 'Device Sampling for Heterogeneous Federated Learning: Theory, Algorithms,
and Implementation.'
affiliation: Purdue
venue: 'INFOCOM :mortar_board:'
year: '2021'
tldr: 'D2D-FedL: Two important characteristics of contemporary wireless networks:
(i) the network may contain heterogeneous communication/computation resources,
while (ii) there may be significant overlaps in devices'' local data distributions.
In this work, we develop a novel optimization methodology that jointly accounts
for these factors via intelligent device sampling complemented by device-to-device
(D2D) offloading. Our optimization aims to select the best combination of sampled
nodes and data offloading configuration to maximize FedL training accuracy subject
to realistic constraints on the network topology and device capabilities. Theoretical
analysis of the D2D offloading subproblem leads to new FedL convergence bounds
and an efficient sequential convex optimizer. Using this result, we develop
a sampling methodology based on graph convolutional networks (GCNs) which learns
the relationship between network attributes, sampled nodes, and resulting offloading
that maximizes FedL accuracy. 当代无线网络的两个重要特征:( i )网络中可能包含异构的通信/计算资源( ii )设备的本地数据分布可能存在显著的重叠。在这项工作中,我们开发了一种新的优化方法,通过智能设备采样和设备到设备(D2D)卸载来共同考虑这些因素。我们的优化目标是在网络拓扑和设备能力的现实约束下,选择采样节点和数据卸载配置的最佳组合,以最大化FedL训练精度。对D2D卸载子问题的理论分析得到了新的FedL收敛界和一个有效的序列凸优化器。利用这一结果,我们开发了一种基于图卷积网络(GCN)的采样方法,该方法学习网络属性、采样节点和结果卸载之间的关系,从而最大化FedL的准确性。'
materials:
PUB: https://ieeexplore.ieee.org/document/9488906
PDF: https://arxiv.org/abs/2101.00787
- title: Federated Graph Classification over Non-IID Graphs
affiliation: Emory
venue: 'NeurIPS :mortar_board:'
year: '2021'
tldr: 'GCFL: Graphs can also be regarded as a special type of data samples. We
analyze real-world graphs from different domains to confirm that they indeed
share certain graph properties that are statistically significant compared with
random graphs. However, we also find that different sets of graphs, even from
the same domain or same dataset, are non-IID regarding both graph structures
and node features. A graph clustered federated learning (GCFL) framework that
dynamically finds clusters of local systems based on the gradients of GNNs,
and theoretically justify that such clusters can reduce the structure and feature
heterogeneity among graphs owned by the local systems. Moreover, we observe
the gradients of GNNs to be rather fluctuating in GCFL which impedes high-quality
clustering, and design a gradient sequence-based clustering mechanism based
on dynamic time warping (GCFL+). 图也可以看作是一种特殊类型的数据样本。我们分析来自不同领域的真实图,以确认它们确实共享某些与随机图形相比具有统计意义的图属性。然而,我们也发现不同的图集,即使来自相同的域或相同的数据集,在图结构和节点特性方面都是非IID的。图聚类联邦学习(GCFL)框架,基于GNNs的梯度动态地找到本地系统的集群,并从理论上证明这样的集群可以减少本地系统所拥有的图之间的结构和特征异构性。此外,我们观察到GNNs的梯度在GCFL中波动较大,阻碍了高质量的聚类,并设计了基于动态时间规整的梯度序列聚类机制(GCFL+)。'
materials:
PUB.: https://papers.nips.cc/paper/2021/hash/9c6947bd95ae487c81d4e19d3ed8cd6f-Abstract.html
PDF: https://arxiv.org/abs/2106.13423
CODE: https://github.com/Oxfordblue7/GCFL
解读: https://zhuanlan.zhihu.com/p/430623053
- title: Subgraph Federated Learning with Missing Neighbor Generation
affiliation: Emory; UBC; Lehigh University
venue: 'NeurIPS :mortar_board:'
year: '2021'
tldr: 'FedSage: In this work, towards the novel yet realistic setting of subgraph
federated learning, we propose two major techniques: (1) FedSage, which trains
a GraphSage model based on FedAvg to integrate node features, link structures,
and task labels on multiple local subgraphs; (2) FedSage+, which trains a missing
neighbor generator along FedSage to deal with missing links across local subgraphs.
在本工作中,针对子图联邦学习的新颖而现实的设置,我们提出了两个主要技术:(1) FedSage,它基于FedAvg训练一个GraphSage模型,以整合多个局部子图上的节点特征、链接结构和任务标签;(2)
FedSage +,它沿着FedSage训练一个缺失的邻居生成器,以处理跨本地子图的缺失链接。'
materials:
PUB.: https://papers.neurips.cc/paper/2021/hash/34adeb8e3242824038aa65460a47c29e-Abstract.html
PDF: https://arxiv.org/abs/2106.13430
- title: Cross-Node Federated Graph Neural Network for Spatio-Temporal Data Modeling
affiliation: USC
venue: 'KDD :mortar_board:'
year: '2021'
tldr: 'CNFGNN: Cross-Node Federated Graph Neural Network (CNFGNN) , a federated
spatio-temporal model, which explicitly encodes the underlying graph structure
using graph neural network (GNN)-based architecture under the constraint of
cross-node federated learning, which requires that data in a network of nodes
is generated locally on each node and remains decentralized. CNFGNN operates
by disentangling the temporal dynamics modeling on devices and spatial dynamics
on the server, utilizing alternating optimization to reduce the communication
cost, facilitating computations on the edge devices. 跨节点联邦图神经网络(CNFGNN),是一个联邦时空模型,在跨节点联邦学习的约束下,使用基于图神经网络(GNN)的架构对底层图结构进行显式编码,这要求节点网络中的数据是在每个节点上本地生成的,并保持分散。CNFGNN通过分解设备上的时间动态建模和服务器上的空间动态来运作,利用交替优化来降低通信成本,促进边缘设备的计算。'
materials:
PUB: https://dl.acm.org/doi/10.1145/3447548.3467371
PDF: https://arxiv.org/abs/2106.05223
CODE: https://github.com/mengcz13/KDD2021_CNFGNN
解读: https://zhuanlan.zhihu.com/p/434839878
- title: Differentially Private Federated Knowledge Graphs Embedding **`kg.`**
affiliation: BUAA
venue: CIKM
year: '2021'
tldr: 'FKGE: A novel decentralized scalable learning framework, Federated Knowledge
Graphs Embedding (FKGE), where embeddings from different knowledge graphs can
be learnt in an asynchronous and peer-to-peer manner while being privacy-preserving.
FKGE exploits adversarial generation between pairs of knowledge graphs to translate
identical entities and relations of different domains into near embedding spaces.
In order to protect the privacy of the training data, FKGE further implements
a privacy-preserving neural network structure to guarantee no raw data leakage.
一种新颖的去中心化可扩展学习框架,联邦知识图谱嵌入(FKGE),其中来自不同知识图谱的嵌入可以以异步和对等的方式学习,同时保持隐私。FKGE利用成对知识图谱之间的对抗生成,将不同领域的相同实体和关系转换到临近嵌入空间。为了保护训练数据的隐私,FKGE进一步实现了一个保护隐私的神经网络结构,以保证原始数据不会泄露。'
materials:
PUB: https://dl.acm.org/doi/10.1145/3459637.3482252
PDF: https://arxiv.org/abs/2105.07615
CODE: https://github.com/HKUST-KnowComp/FKGE
解读: https://zhuanlan.zhihu.com/p/437895959
- title: Decentralized Federated Graph Neural Networks
affiliation: Blue Elephant Tech
venue: IJCAI Workshop
year: '2021'
tldr: 'D-FedGNN: A new Decentralized Federated Graph Neural Network (D-FedGNN
for short) which allows multiple participants to train a graph neural network
model without a centralized server. Specifically, D-FedGNN uses a decentralized
parallel stochastic gradient descent algorithm DP-SGD to train the graph neural
network model in a peer-to-peer network structure. To protect privacy during
model aggregation, D-FedGNN introduces the Diffie-Hellman key exchange method
to achieve secure model aggregation between clients. 一个新的去中心化的联邦图神经网络(简称D-FedGNN)允许多个参与者在没有中心化服务器的情况下训练一个图神经网络模型。具体地,D-FedGNN采用去中心化的并行随机梯度下降算法DP-SGD在对等网络结构中训练图神经网络模型。为了保护模型聚合过程中的隐私,D-FedGNN引入了Diffie-Hellman密钥交换方法来实现客户端之间的安全模型聚合。'
materials:
PDF: https://federated-learning.org/fl-ijcai-2021/FTL-IJCAI21_paper_20.pdf
- title: 'FedSGC: Federated Simple Graph Convolution for Node Classification'
affiliation: HKUST
venue: IJCAI Workshop
year: '2021'
tldr: 'FedSGC: We study the vertical and horizontal settings for federated learning
on graph data. We propose FedSGC to train the Simple Graph Convolution model
under three data split scenarios. 我们研究了图数据上联邦学习的横向和纵向设置。我们提出FedSGC在三种数据分割场景下训练简单图卷积模型。'
materials:
PDF: https://federated-learning.org/fl-ijcai-2021/FTL-IJCAI21_paper_5.pdf
- title: 'FL-DISCO: Federated Generative Adversarial Network for Graph-based Molecule
Drug Discovery: Special Session Paper'
affiliation: UNM
venue: ICCAD
year: '2021'
tldr: 'FL-DISCO: A holistic collaborative and privacy-preserving FL framework,
namely FL-DISCO, which integrates GAN and GNN to generate molecular graphs.
集成GAN和GNN生成分子图的整体协作和隐私保护FL框架FL-DISCO。'
materials:
PUB.: https://doi.org/10.1109/ICCAD51958.2021.9643440
- title: 'FASTGNN: A Topological Information Protected Federated Learning Approach
for Traffic Speed Forecasting'
affiliation: UTS
venue: IEEE Trans. Ind. Informatics
year: '2021'
tldr: 'FASTGNN: We introduce a differential privacy-based adjacency matrix preserving
approach for protecting the topological information. We also propose an adjacency
matrix aggregation approach to allow local GNN-based models to access the global
network for a better training effect. Furthermore, we propose a GNN-based model
named attention-based spatial-temporal graph neural networks (ASTGNN) for traffic
speed forecasting. We integrate the proposed federated learning framework and
ASTGNN as FASTGNN for traffic speed forecasting. 我们提出了一种基于差分隐私的邻接矩阵保护方法来保护拓扑信息。我们还提出了一种邻接矩阵聚合方法,允许基于局部GNN的模型访问全局网络,以获得更好的训练效果。此外,我们提出了一个基于GNN的模型,称为基于注意力的时空图神经网络(ASTGNN)的交通速度预测。我们将提出的联邦学习框架和ASTGNN集成为FASTGNN用于交通速度预测。'
materials:
PUB: https://ieeexplore.ieee.org/document/9340313
- title: 'DAG-FL: Direct Acyclic Graph-based Blockchain Empowers On-Device Federated
Learning'
affiliation: BUPT; UESTC
venue: ICC
year: '2021'
tldr: 'DAG-FL: In order to address device asynchrony and anomaly detection in
FL while avoiding the extra resource consumption caused by blockchain, this
paper introduces a framework for empowering FL using Direct Acyclic Graph (DAG)-based
blockchain systematically (DAG-FL). 为了解决FL中的设备不同步和异常检测问题,同时避免区块链带来的额外资源消耗,本文提出了一种基于直接无环图(DAG,
Direct Acyclic Graph)的区块链系统为FL赋能的框架(DAG-FL)。'
materials:
PUB.: https://doi.org/10.1109/ICC42927.2021.9500737
PDF: https://arxiv.org/abs/2104.13092
- title: 'FedE: Embedding Knowledge Graphs in Federated Setting **`kg.`**'
affiliation: ZJU
venue: IJCKG
year: '2021'
tldr: 'FedE: In this paper, we introduce federated setting to keep Multi-Source
KGs'' privacy without triple transferring between KGs(Knowledge graphs) and
apply it in embedding knowledge graph, a typical method which have proven effective
for KGC(Knowledge Graph Completion) in the past decade. We propose a Federated
Knowledge Graph Embedding framework FedE, focusing on learning knowledge graph
embeddings by aggregating locally-computed updates. 在本文中,我们引入联邦设置来保持多源KGs的隐私,而不需要在KGs
(知识图谱)之间传输三元组,并将其应用于知识图谱嵌入(这是一个典型的方法,在过去的十年中已证明对KGC(知识图谱补全)有效)。我们提出了一个联邦知识图谱嵌入框架FedE,重点是通过聚合本地计算的更新来学习知识图谱嵌入。'
materials:
PUB.: https://doi.org/10.1145/3502223.3502233
PDF: https://arxiv.org/abs/2010.12882
CODE: https://github.com/AnselCmy/FedE
- title: Federated Knowledge Graph Embeddings with Heterogeneous Data **`kg.`**
affiliation: TJU
venue: CCKS
year: '2021'
tldr: 'FKE: A new federated framework FKE for representation learning of knowledge
graphs to deal with the problem of privacy protection and heterogeneous data.
一种新的联邦框架 FKE,用于知识图谱的表示学习,以处理隐私保护和异构数据的问题。'
materials:
PUB.: https://doi.org/10.1007/978-981-16-6471-7_2
- title: A Graph Federated Architecture with Privacy Preserving Learning
affiliation: EPFL
venue: SPAWC
year: '2021'
tldr: 'GFL: GFL, A private multi-server federated learning scheme, which we call
graph federated learning. We use cryptographic and differential privacy concepts
to privatize the federated learning algorithm over a graph structure. We further
show under convexity and Lipschitz conditions, that the privatized process matches
the performance of the non-private algorithm. GFL,一种私有的多服务器联邦学习方案,我们称之为图联邦学习。
我们使用密码学和差分隐私概念将联邦学习算法私有化在图结构上。 我们进一步表明在凸性和 Lipschitz 条件下,私有化过程与非私有算法的性能相匹配。'
materials:
PUB.: https://doi.org/10.1109/SPAWC51858.2021.9593148
PDF: https://arxiv.org/abs/2104.13215
解读: https://zhuanlan.zhihu.com/p/440809332
- title: Federated Social Recommendation with Graph Neural Network
affiliation: UIC
venue: ACM TIST
year: '2021'
tldr: 'FeSoG: A novel framework Fedrated Social recommendation with Graph neural
network (FeSoG). Firstly, FeSoG adopts relational attention and aggregation
to handle heterogeneity. Secondly, FeSoG infers user embeddings using local
data to retain personalization.The proposed model employs pseudo-labeling techniques
with item sampling to protect the privacy and enhance training. 一种带有图神经网络 (FeSoG)
的新框架联邦社交推荐。 首先,FeSoG 采用关系注意力和聚合来处理异质性。 其次,FeSoG 使用本地数据推断用户嵌入以保留个性化。所提出的模型采用带有项目采样的伪标签技术来保护隐私并增强训练。'
materials:
PUB: https://dl.acm.org/doi/abs/10.1145/3501815
PDF: https://arxiv.org/abs/2111.10778
CODE: https://github.com/YangLiangwei/FeSoG
- title: 'FedGraphNN: A Federated Learning System and Benchmark for Graph Neural
Networks :fire: **`surv.`**'
affiliation: USC
venue: ICLR Workshop / MLSys Workshop
year: '2021'
tldr: 'FedGraphNN: FedGraphNN, an open FL benchmark system that can facilitate
research on federated GNNs. FedGraphNN is built on a unified formulation of
graph FL and contains a wide range of datasets from different domains, popular
GNN models, and FL algorithms, with secure and efficient system support. FedGraphNN是一个开放的FL基准系统,可以方便地进行联邦GNN的研究。FedGraphNN建立在图FL的统一提法之上,包含来自不同领域的广泛数据集、流行的GNN模型和FL算法,具有安全高效的系统支持。'
materials:
PDF: https://arxiv.org/abs/2104.07145
CODE: https://github.com/FedML-AI/FedGraphNN
解读: https://zhuanlan.zhihu.com/p/429220636
- title: A Federated Multigraph Integration Approach for Connectional Brain Template
Learning
affiliation: Istanbul Technical University
venue: MICCAI Workshop
year: '2021'
tldr: 'Fed-CBT: The connectional brain template (CBT) is a compact representation
(i.e., a single connectivity matrix) multi-view brain networks of a given population.
CBTs are especially very powerful tools in brain dysconnectivity diagnosis as
well as holistic brain mapping if they are learned properly – i.e., occupy the
center of the given population. We propose the first federated connectional
brain template learning (Fed-CBT) framework to learn how to integrate multi-view
brain connectomic datasets collected by different hospitals into a single representative
connectivity map. First, we choose a random fraction of hospitals to train our
global model. Next, all hospitals send their model weights to the server to
aggregate them. We also introduce a weighting method for aggregating model weights
to take full benefit from all hospitals. Our model to the best of our knowledge
is the first and only federated pipeline to estimate connectional brain templates
using graph neural networks. 连接脑模板(CBT)是一个给定人群的紧凑表示(即,单个连接矩阵)多视图脑网络。CBTs在大脑障碍诊断和整体大脑映射中特别是非常强大的工具,如果它们被正确地学习-
-即占据给定人群的中心。我们提出了第一个联邦连接脑模板学习( Fed-CBT )框架来学习如何将不同医院收集的多视角脑连接组学数据集整合成一个单一的代表性连接图。首先,我们随机选择一部分医院来训练我们的全球模型。接下来,所有医院将其模型权重发送给服务器进行聚合。我们还介绍了一种加权方法,用于聚合模型权重,以充分受益于所有医院。据我们所知,我们的模型是第一个也是唯一一个使用图神经网络来估计连接大脑模板的联邦管道。'
materials:
PUB.: https://link.springer.com/chapter/10.1007/978-3-030-89847-2_4
CODE: https://github.com/basiralab/Fed-CBT
- title: Cluster-driven Graph Federated Learning over Multiple Domains
affiliation: Politecnico di Torino
venue: CVPR Workshop
year: '2021'
tldr: 'FedCG-MD: A novel Cluster-driven Graph Federated Learning (FedCG). In FedCG,
clustering serves to address statistical heterogeneity, while Graph Convolutional
Networks (GCNs) enable sharing knowledge across them. FedCG: i) identifies the
domains via an FL-compliant clustering and instantiates domain-specific modules
(residual branches) for each domain; ii) connects the domain-specific modules
through a GCN at training to learn the interactions among domains and share
knowledge; and iii) learns to cluster unsupervised via teacher-student classifier-training
iterations and to address novel unseen test domains via their domain soft-assignment
scores. 一种新颖的集群驱动的图联邦学习(FedCG)。 在 FedCG 中,聚类用于解决统计异质性,而图卷积网络 (GCN) 可以在它们之间共享知识。
FedCG:i)通过符合 FL 的集群识别域,并为每个域实例化特定于域的模块(剩余分支); ii) 在训练时通过 GCN 连接特定领域的模块,以学习领域之间的交互并共享知识;
iii)通过教师-学生分类器训练迭代学习无监督聚类,并通过其域软分配分数解决新的未知测试域。'
materials:
PDF: https://arxiv.org/abs/2104.14628
解读: https://zhuanlan.zhihu.com/p/440527314
- title: 'FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation'
affiliation: THU
venue: ICML workshop
year: '2021'
tldr: 'FedGNN: Graph neural network (GNN) is widely used for recommendation to
model high-order interactions between users and items.We propose a federated
framework for privacy-preserving GNN-based recommendation, which can collectively
train GNN models from decentralized user data and meanwhile exploit high-order
user-item interaction information with privacy well protected. 图神经网络(GNN)被广泛用于推荐,以对用户和项目之间的高阶交互进行建模。我们提出了一种基于隐私保护的基于
GNN 的推荐的联邦框架,它可以从分散的用户数据集中训练 GNN 模型,同时利用高阶 - 订购用户-项目交互信息,隐私得到很好的保护。'
materials:
PDF: https://arxiv.org/abs/2102.04925
解读: https://zhuanlan.zhihu.com/p/428783383
- title: Decentralized federated learning of deep neural networks on non-iid data
affiliation: RISE; Chalmers University of Technology
venue: ICML workshop
year: '2021'
tldr: 'DFL-PENS: We study the problem of how to efficiently learn a model in a
peer-to-peer system with non-iid client data. We propose a method named Performance-Based
Neighbor Selection (PENS) where clients with similar data distributions detect
each other and cooperate by evaluating their training losses on each other''s
data to learn a model suitable for the local data distribution. 我们研究如何在具有非独立同分布客户端数据的对等系统中高效地学习模型的问题。我们提出了一种名为基于性能的邻居选择(Performance-Based
Neighbor Selection,PENS)的方法,具有相似数据分布的客户端通过评估彼此数据的训练损失来相互检测和合作,从而学习适合本地数据分布的模型。'
materials:
PDF: https://arxiv.org/abs/2107.08517
CODE: https://github.com/guskarls/dfl-pens
- title: 'Glint: Decentralized Federated Graph Learning with Traffic Throttling
and Flow Scheduling'
affiliation: The University of Aizu
venue: IWQoS
year: '2021'
tldr: 'Glint: We study federated graph learning (FGL) under the cross-silo setting
where several servers are connected by a wide-area network, with the objective
of improving the Quality-of-Service (QoS) of graph learning tasks. Glint, a
decentralized federated graph learning system with two novel designs: network
traffic throttling and priority-based flows scheduling. 我们研究了跨孤岛设置下的联邦图学习(FGL),其中多台服务器通过广域网连接,目的是提高图学习任务的服务质量(QoS)。
Glint,一个分散的联邦图学习系统,具有两种新颖的设计:网络流量节流和基于优先级的流调度。'
materials:
PUB.: https://doi.org/10.1109/IWQOS52092.2021.9521331
- title: Federated Graph Neural Network for Cross-graph Node Classification
affiliation: BUPT
venue: CCIS
year: '2021'
tldr: 'FGNN: A novel distributed scalable federated graph neural network (FGNN)
to solve the cross-graph node classification problem. We add PATE mechanism
into the domain adversarial neural network (DANN) to construct a cross-network
node classification model, and extract effective information from node features
of source and target graphs for encryption and spatial alignment. Moreover,
we use a one-to-one approach to construct cross-graph node classification models
for multiple source graphs and the target graph. Federated learning is used
to train the model jointly through multi-party cooperation to complete the target
graph node classification task. 一种新颖的分布式可扩展联邦图神经网络 (FGNN),用于解决跨图节点分类问题。 我们在域对抗神经网络(DANN)中加入PATE机制,构建跨网络节点分类模型,从源图和目标图的节点特征中提取有效信息进行加密和空间对齐。
此外,我们使用一对一的方法为多个源图和目标图构建跨图节点分类模型。 联邦学习用于通过多方合作共同训练模型,完成目标图节点分类任务。'
materials:
PUB.: https://doi.org/10.1109/CCIS53392.2021.9754598
- title: 'GraFeHTy: Graph Neural Network using Federated Learning for Human Activity
Recognition'
affiliation: Lead Data Scientist Ericsson Digital Services
venue: ICMLA
year: '2021'
tldr: 'GraFeHTy: Human Activity Recognition (HAR) from sensor measurements is
still challenging due to noisy or lack of la-belled examples and issues concerning
data privacy. We propose a novel algorithm GraFeHTy, a Graph Convolution Network
(GCN) trained in a federated setting. We construct a similarity graph from sensor
measurements for each user and apply a GCN to perform semi-supervised classification
of human activities by leveraging inter-relatedness and closeness of activities.
由于噪声或缺乏标记示例以及有关数据隐私的问题,来自传感器测量的人类活动识别 (HAR) 仍然具有挑战性。 我们提出了一种新的算法 GraFeHTy,一种在联邦设置中训练的图卷积网络
(GCN)。 我们从每个用户的传感器测量中构建相似图,并应用 GCN 通过利用活动的相互关联性和密切性来执行人类活动的半监督分类。'
materials:
PUB.: https://doi.org/10.1109/ICMLA52953.2021.00184
- title: Distributed Training of Graph Convolutional Networks
affiliation: Sapienza University of Rome
venue: TSIPN
year: '2021'
tldr: 'D-GCN: The aim of this work is to develop a fully-distributed algorithmic
framework for training graph convolutional networks (GCNs). The proposed method
is able to exploit the meaningful relational structure of the input data, which
are collected by a set of agents that communicate over a sparse network topology.
After formulating the centralized GCN training problem, we first show how to
make inference in a distributed scenario where the underlying data graph is
split among different agents. Then, we propose a distributed gradient descent
procedure to solve the GCN training problem. The resulting model distributes
computation along three lines: during inference, during back-propagation, and
during optimization. Convergence to stationary solutions of the GCN training
problem is also established under mild conditions. Finally, we propose an optimization
criterion to design the communication topology between agents in order to match
with the graph describing data relationships. 这项工作的目的是开发一个用于训练图卷积网络(GCN)的完全分布式算法框架。
所提出的方法能够利用输入数据的有意义的关系结构,这些数据由一组通过稀疏网络拓扑进行通信的代理收集。 在制定了集中式 GCN 训练问题之后,我们首先展示了如何在底层数据图在不同代理之间拆分的分布式场景中进行推理。
然后,我们提出了一种分布式梯度下降程序来解决 GCN 训练问题。 生成的模型沿三条线分布计算:推理期间、反向传播期间和优化期间。 GCN 训练问题的平稳解的收敛性也在温和条件下建立。
最后,我们提出了一种优化标准来设计代理之间的通信拓扑,以便与描述数据关系的图相匹配。'
materials:
PUB: https://ieeexplore.ieee.org/document/9303371
PDF: https://arxiv.org/abs/2007.06281
解读: https://zhuanlan.zhihu.com/p/433329525
- title: Decentralized federated learning for electronic health records
affiliation: UMN
venue: NeurIPS Workshop / CISS
year: '2020'
tldr: 'FL-DSGD: We focus on improving the communication efficiency for fully decentralized
federated learning (DFL) over a graph, where the algorithm performs local updates
for several iterations and then enables communications among the nodes. 我们专注于提高图上完全分散的联邦学习(DFL)的通信效率,其中算法执行多次迭代的本地更新,然后实现节点之间的通信。'
materials:
PUB: https://ieeexplore.ieee.org/abstract/document/9086196#:~:text=Decentralized%20Federated%20Learning%20for%20Electronic%20Health%20Records%20Abstract:,in%20distributed%20training%20problems%20within%20a%20star%20network.
PDF: https://arxiv.org/abs/1912.01792
解读: https://zhuanlan.zhihu.com/p/448738120
- title: 'ASFGNN: Automated Separated-Federated Graph Neural Network'
affiliation: Ant Group
venue: PPNA
year: '2020'
tldr: 'ASFGNN: An Automated Separated-Federated Graph Neural Network (ASFGNN)
learning paradigm. ASFGNN consists of two main components, i.e., the training
of GNN and the tuning of hyper-parameters. Specifically, to solve the data Non-IID
problem, we first propose a separated-federated GNN learning model, which decouples
the training of GNN into two parts: the message passing part that is done by
clients separately, and the loss computing part that is learnt by clients federally.
To handle the time-consuming parameter tuning problem, we leverage Bayesian
optimization technique to automatically tune the hyper-parameters of all the
clients. 自动分离联邦图神经网络( ASFGNN )学习范式。ASFGNN由两个主要部分组成,即GNN的训练和超参数的调整。具体来说,为了解决数据Non
- IID问题,我们首先提出了分离联邦GNN学习模型,将GNN的训练解耦为两个部分:由客户端单独完成的消息传递部分和由客户端联邦学习的损失计算部分。为了处理耗时的参数调优问题,我们利用贝叶斯优化技术自动调优所有客户端的超参数。'
materials:
PUB.: https://doi.org/10.1007/s12083-021-01074-w
PDF: https://arxiv.org/abs/2011.03248
解读: https://zhuanlan.zhihu.com/p/431283541
- title: Decentralized federated learning via sgd over wireless d2d networks
affiliation: SZU
venue: SPAWC
year: '2020'
tldr: 'DSGD: Communication is a critical enabler of large-scale FL due to significant
amount of model information exchanged among edge devices. In this paper, we
consider a network of wireless devices sharing a common fading wireless channel
for the deployment of FL. Each device holds a generally distinct training set,
and communication typically takes place in a Device-to-Device (D2D) manner.
In the ideal case in which all devices within communication range can communicate
simultaneously and noiselessly, a standard protocol that is guaranteed to converge
to an optimal solution of the global empirical risk minimization problem under
convexity and connectivity assumptions is Decentralized Stochastic Gradient
Descent (DSGD). DSGD integrates local SGD steps with periodic consensus averages
that require communication between neighboring devices. In this paper, wireless
protocols are proposed that implement DSGD by accounting for the presence of
path loss, fading, blockages, and mutual interference. The proposed protocols
are based on graph coloring for scheduling and on both digital and analog transmission
strategies at the physical layer, with the latter leveraging over-the-air computing
via sparsity-based recovery. 由于边缘设备之间交换了大量模型信息,因此通信是大规模 FL 的关键推动力。在本文中,我们考虑了一个无线设备网络,该网络共享一个共同的衰落无线信道来部署
FL。每个设备都拥有一个通常不同的训练集,并且通信通常以设备到设备 (D2D) 的方式进行。在通信范围内的所有设备可以同时无噪声地通信的理想情况下,保证在凸性和连通性假设下收敛到全局经验风险最小化问题的最优解的标准协议是分散随机梯度下降(DSGD)。
DSGD 将本地 SGD 步骤与需要相邻设备之间通信的周期性共识平均值集成在一起。在本文中,提出了通过考虑路径损耗、衰落、阻塞和相互干扰的存在来实现 DSGD
的无线协议。所提出的协议基于用于调度的图形着色以及物理层的数字和模拟传输策略,后者通过基于稀疏性的恢复利用空中计算。'
materials:
PUB: https://ieeexplore.ieee.org/document/9154332
PDF: https://arxiv.org/abs/2002.12507
- title: 'SGNN: A Graph Neural Network Based Federated Learning Approach by Hiding
Structure'
affiliation: SDU
venue: BigData
year: '2019'
tldr: 'SGNN: We propose a similarity-based graph neural network model, SGNN, which
captures the structure information of nodes precisely in node classification
tasks. It also takes advantage of the thought of federated learning to hide
the original information from different data sources to protect users'' privacy.
We use deep graph neural network with convolutional layers and dense layers
to classify the nodes based on their structures and features. 我们提出了一种基于相似度的图神经网络模型
SGNN,它在节点分类任务中精确地捕获节点的结构信息。 它还利用联邦学习的思想,对不同数据源隐藏原始信息,保护用户隐私。 我们使用具有卷积层和密集层的深度图神经网络根据节点的结构和特征对节点进行分类。'
materials:
PUB: https://ieeexplore.ieee.org/document/9005983
PDF: https://www.researchgate.net/profile/Shijun_Liu3/publication/339482514_SGNN_A_Graph_Neural_Network_Based_Federated_Learning_Approach_by_Hiding_Structure/links/5f48365d458515a88b790595/SGNN-A-Graph-Neural-Network-Based-Federated-Learning-Approach-by-Hiding-Structure.pdf
- title: Towards Federated Graph Learning for Collaborative Financial Crimes Detection
affiliation: IBM
venue: NeurIPS Workshop
year: '2019'
tldr: 'FGL-DFC: To detect financial misconduct, A methodology to share key information
across institutions by using a federated graph learning platform that enables
us to build more accurate machine learning models by leveraging federated learning
and also graph learning approaches. We demonstrated that our federated model
outperforms local model by 20% with the UK FCA TechSprint data set. 为了检测财务不当行为,一种通过使用联邦图学习平台在机构间共享关键信息的方法,使我们能够通过利用联邦学习和图学习方法来构建更准确的机器学习模型。
我们证明了我们的联邦模型在英国 FCA TechSprint 数据集上的性能优于本地模型 20%。'
materials:
PDF: https://arxiv.org/abs/1909.12946
- title: 'Federated learning of predictive models from federated Electronic Health
Records :star:'
affiliation: BU
venue: Int. J. Medical Informatics
year: '2018'
tldr: 'cPDS: We aim at solving a binary supervised classification problem to predict
hospitalizations for cardiac events using a distributed algorithm. We focus
on the soft-margin l1-regularized sparse Support Vector Machine (sSVM) classifier.
We develop an iterative cluster Primal Dual Splitting (cPDS) algorithm for solving
the large-scale sSVM problem in a decentralized fashion. 我们的目标是解决一个二元监督分类问题,以使用分布式算法预测心脏事件的住院情况。
我们专注于软边距 l1 正则化稀疏支持向量机 (sSVM) 分类器。 我们开发了一种迭代集群 Primal Dual Splitting (cPDS)
算法,用于以分散的方式解决大规模 sSVM 问题。'
materials:
PUB: https://www.sciencedirect.com/science/article/abs/pii/S138650561830008X?via%3Dihub
- title: Federated Graph Contrastive Learning
affiliation: UTS
venue: preprint
year: '2022'
tldr: 'FGCL: TBC'
materials:
PDF: https://arxiv.org/abs/2207.11836
- title: 'Federated Graph Machine Learning: A Survey of Concepts, Techniques, and
Applications **`surv.`**'
affiliation: University of Virginia
venue: CIKM Workshop (Oral)
year: '2022'
tldr: 'FGML: FGML a comprehensive review of the literature in Federated Graph
Machine Learning. FGML 对图联邦机器学习的文献进行了全面回顾的综述文章。'
materials:
PDF: https://arxiv.org/abs/2207.11812
- title: 'FD-GATDR: A Federated-Decentralized-Learning Graph Attention Network for
Doctor Recommendation Using EHR'
affiliation: ''
venue: preprint
year: '2022'
tldr: 'FD-GATDR: TBC'
materials:
PDF: https://arxiv.org/abs/2207.05750
- title: 'Privacy-preserving Graph Analytics: Secure Generation and Federated Learning'
affiliation: ''
venue: preprint
year: '2022'
tldr: ''
materials:
PDF: https://arxiv.org/abs/2207.00048
- title: Personalized Subgraph Federated Learning
affiliation: ''
venue: preprint
year: '2022'
tldr: 'FED-PUB: TBC'
materials:
PDF: https://arxiv.org/abs/2206.10206
- title: Federated Graph Attention Network for Rumor Detection
affiliation: ''
venue: preprint
year: '2022'
tldr: ''
materials:
PDF: https://arxiv.org/abs/2206.05713
CODE: https://github.com/baichuanzheng1/fedgat
- title: 'FedRel: An Adaptive Federated Relevance Framework for Spatial Temporal
Graph Learning'
affiliation: ''
venue: preprint
year: '2022'
tldr: ''
materials:
PDF: https://arxiv.org/abs/2206.03420
- title: Privatized Graph Federated Learning
affiliation: ''
venue: preprint
year: '2022'
tldr: ''
materials:
PDF: https://arxiv.org/abs/2203.07105
- title: Graph-Assisted Communication-Efficient Ensemble Federated Learning
affiliation: ''
venue: preprint
year: '2022'
tldr: ''
materials:
PDF: https://arxiv.org/abs/2202.13447
- title: 'Federated Graph Neural Networks: Overview, Techniques and Challenges **`surv.`**'