-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain_qm9.py
176 lines (136 loc) · 7.11 KB
/
main_qm9.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
### Based on the code in https://github.com/divelab/DIG/tree/dig-stable/dig/threedgraph
from qm9_dataset import QM93D
from model import LEFTNet
import argparse
import os
import torch
from torch.optim import Adam
from torch_geometric.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import StepLR, OneCycleLR, CosineAnnealingWarmRestarts
from tqdm import tqdm
import time
def run(device, train_dataset, valid_dataset, test_dataset, model, scheduler_name, loss_func, epochs=800, batch_size=32, vt_batch_size=32, lr=0.0005, lr_decay_factor=0.5, lr_decay_step_size=50, weight_decay=0,
save_dir='models/', log_dir='', disable_tqdm=False):
model = model.to(device)
num_params = sum(p.numel() for p in model.parameters())
print('num_parameters:', num_params)
train_loader = DataLoader(train_dataset, batch_size, shuffle=True)
valid_loader = DataLoader(valid_dataset, vt_batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, vt_batch_size, shuffle=False)
optimizer = Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
if scheduler_name == 'steplr':
scheduler = StepLR(optimizer, step_size=lr_decay_step_size, gamma=lr_decay_factor)
elif scheduler_name == 'onecyclelr':
scheduler = OneCycleLR(optimizer, max_lr=lr, steps_per_epoch=len(train_loader), epochs=epochs)
best_valid = float('inf')
test_valid = float('inf')
if save_dir != '':
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if log_dir != '':
if not os.path.exists(log_dir):
os.makedirs(log_dir)
writer = SummaryWriter(log_dir=log_dir)
start_epoch = 1
for epoch in range(start_epoch, epochs + 1):
print("=====Epoch {}".format(epoch), flush=True)
t_start = time.perf_counter()
train_mae = train(model, optimizer, scheduler, scheduler_name, train_loader, loss_func, device, disable_tqdm)
valid_mae = val(model, valid_loader, device, disable_tqdm)
test_mae = val(model, test_loader, device, disable_tqdm)
if log_dir != '':
writer.add_scalar('train_mae', train_mae, epoch)
writer.add_scalar('valid_mae', valid_mae, epoch)
writer.add_scalar('test_mae', test_mae, epoch)
if valid_mae < best_valid:
best_valid = valid_mae
test_valid = test_mae
if save_dir != '':
print('Saving checkpoint...')
checkpoint = {'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'scheduler_state_dict': scheduler.state_dict(), 'best_valid_mae': best_valid, 'num_params': num_params}
torch.save(checkpoint, os.path.join(save_dir, 'valid_checkpoint.pt'))
t_end = time.perf_counter()
print({'Train': train_mae, 'Validation': valid_mae, 'Test': test_mae, 'Best valid': best_valid, 'Test@ best valid': test_valid, 'Duration': t_end-t_start})
if scheduler_name == 'steplr':
scheduler.step()
print(f'Best validation MAE so far: {best_valid}')
print(f'Test MAE when got best validation result: {test_valid}')
if log_dir != '':
writer.close()
def train(model, optimizer, scheduler, scheduler_name, train_loader, loss_func, device, disable_tqdm):
model.train()
loss_accum = 0
for step, batch_data in enumerate(tqdm(train_loader, disable=disable_tqdm)):
optimizer.zero_grad()
batch_data = batch_data.to(device)
out = model(batch_data)
loss = loss_func(out, batch_data.y.unsqueeze(1))
loss.backward()
optimizer.step()
if scheduler_name == 'onecyclelr':
scheduler.step()
loss_accum += loss.detach().cpu().item()
return loss_accum / (step + 1)
def val(model, data_loader, device, disable_tqdm):
model.eval()
preds = torch.Tensor([]).to(device)
targets = torch.Tensor([]).to(device)
for step, batch_data in enumerate(tqdm(data_loader, disable=disable_tqdm)):
batch_data = batch_data.to(device)
with torch.no_grad():
out = model(batch_data)
preds = torch.cat([preds, out.detach_()], dim=0)
targets = torch.cat([targets, batch_data.y.unsqueeze(1)], dim=0)
return torch.mean(torch.abs(preds - targets)).cpu().item()
parser = argparse.ArgumentParser(description='QM9')
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--target', type=str, default='U0')
parser.add_argument('--train_size', type=int, default=110000)
parser.add_argument('--valid_size', type=int, default=10000)
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--cutoff', type=float, default=5.0)
parser.add_argument('--num_radial', type=int, default=32)
parser.add_argument('--hidden_channels', type=int, default=256)
parser.add_argument('--num_layers', type=int, default=4)
parser.add_argument('--epochs', type=int, default=1000)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--vt_batch_size', type=int, default=32)
parser.add_argument('--lr', type=float, default=0.0005)
parser.add_argument('--lr_decay_factor', type=float, default=0.5)
parser.add_argument('--lr_decay_step_size', type=int, default=150)
parser.add_argument('--weight_decay', type=float, default=0)
parser.add_argument('--save_dir', type=str, default='')
parser.add_argument('--disable_tqdm', default=False, action='store_true')
parser.add_argument('--scheduler', type=str, default='steplr')
parser.add_argument('--norm_label', default=False, action='store_true')
args = parser.parse_args()
print(args)
print(args.save_dir)
dataset = QM93D(root='dataset/')
target = args.target
dataset.data.y = dataset.data[target]
split_idx = dataset.get_idx_split(len(dataset.data.y), train_size=args.train_size, valid_size=args.valid_size, seed=args.seed)
train_dataset, valid_dataset, test_dataset = dataset[split_idx['train']], dataset[split_idx['valid']], dataset[split_idx['test']]
print('train, validaion, test:', len(train_dataset), len(valid_dataset), len(test_dataset))
if args.norm_label:
y_mean = torch.mean(train_dataset.data.y).item()
y_std = torch.std(train_dataset.data.y).item()
print('y_mean, y_std:', y_mean, y_std)
else:
y_mean = 0
y_std = 1
model = LEFTNet(pos_require_grad=False, cutoff=args.cutoff, num_layers=args.num_layers,
hidden_channels=args.hidden_channels, num_radial=args.num_radial, y_mean=y_mean, y_std=y_std)
loss_func = torch.nn.L1Loss()
device = f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu'
device = torch.device(device)
print('device',device)
model.to(device)
run(device=device,
train_dataset=train_dataset, valid_dataset=valid_dataset, test_dataset=test_dataset,
model=model, scheduler_name=args.scheduler, loss_func=loss_func,
epochs=args.epochs, batch_size=args.batch_size, vt_batch_size=args.batch_size,
lr=args.lr, lr_decay_factor=args.lr_decay_factor, lr_decay_step_size=args.lr_decay_step_size,
weight_decay=args.weight_decay,
save_dir=args.save_dir, log_dir=args.save_dir, disable_tqdm=args.disable_tqdm)