Skip to content

Latest commit

 

History

History
12 lines (7 loc) · 1.21 KB

README.md

File metadata and controls

12 lines (7 loc) · 1.21 KB

服务器端实用目标检测方案

简介

  • 近年来,学术界和工业界广泛关注图像中目标检测任务。基于PaddleClas中SSLD蒸馏方案训练得到的ResNet50_vd预训练模型(ImageNet1k验证集上Top1 Acc为82.39%),结合PaddleDetection中的丰富算子,飞桨提供了一种面向服务器端实用的目标检测方案PSS-DET(Practical Server Side Detection)。基于COCO2017目标检测数据集,V100单卡预测速度为为61FPS时,COCO mAP可达41.2%。

模型库

骨架网络 网络类型 每张GPU图片个数 学习率策略 推理时间(fps) Box AP Mask AP 下载 配置文件
ResNet50-vd-FPN-Dcnv2 Faster 2 3x 61.425 41.5 - 下载链接 配置文件