forked from meta-llama/llama-recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
60 lines (46 loc) · 1.57 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import fire
import torch
from vllm import LLM
from vllm import LLM, SamplingParams
from accelerate.utils import is_xpu_available
if is_xpu_available():
torch.xpu.manual_seed(42)
else:
torch.cuda.manual_seed(42)
torch.manual_seed(42)
def load_model(model_name, tp_size=1):
llm = LLM(model_name, tensor_parallel_size=tp_size)
return llm
def main(
model,
max_new_tokens=100,
user_prompt=None,
top_p=0.9,
temperature=0.8
):
while True:
if user_prompt is None:
user_prompt = input("Enter your prompt: ")
print(f"User prompt:\n{user_prompt}")
print(f"sampling params: top_p {top_p} and temperature {temperature} for this inference request")
sampling_param = SamplingParams(top_p=top_p, temperature=temperature, max_tokens=max_new_tokens)
outputs = model.generate(user_prompt, sampling_params=sampling_param)
print(f"model output:\n {user_prompt} {outputs[0].outputs[0].text}")
user_prompt = input("Enter next prompt (press Enter to exit): ")
if not user_prompt:
break
def run_script(
model_name: str,
peft_model=None,
tp_size=1,
max_new_tokens=100,
user_prompt=None,
top_p=0.9,
temperature=0.8
):
model = load_model(model_name, tp_size)
main(model, max_new_tokens, user_prompt, top_p, temperature)
if __name__ == "__main__":
fire.Fire(run_script)