forked from sgl-project/sglang
-
Notifications
You must be signed in to change notification settings - Fork 1
/
gemini_example_chat.py
73 lines (55 loc) · 1.69 KB
/
gemini_example_chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
"""
Usage:
export GCP_PROJECT_ID=******
python3 gemini_example_chat.py
"""
import sglang as sgl
@sgl.function
def multi_turn_question(s, question_1, question_2):
s += sgl.user(question_1)
s += sgl.assistant(sgl.gen("answer_1", max_tokens=256))
s += sgl.user(question_2)
s += sgl.assistant(sgl.gen("answer_2", max_tokens=256))
def single():
state = multi_turn_question.run(
question_1="What is the capital of the United States?",
question_2="List two local attractions.",
)
for m in state.messages():
print(m["role"], ":", m["content"])
print("\n-- answer_1 --\n", state["answer_1"])
def stream():
state = multi_turn_question.run(
question_1="What is the capital of the United States?",
question_2="List two local attractions.",
stream=True,
)
for out in state.text_iter():
print(out, end="", flush=True)
print()
def batch():
states = multi_turn_question.run_batch(
[
{
"question_1": "What is the capital of the United States?",
"question_2": "List two local attractions.",
},
{
"question_1": "What is the capital of France?",
"question_2": "What is the population of this city?",
},
]
)
for s in states:
print(s.messages())
if __name__ == "__main__":
sgl.set_default_backend(sgl.VertexAI("gemini-pro"))
# Run a single request
print("\n========== single ==========\n")
single()
# Stream output
print("\n========== stream ==========\n")
stream()
# Run a batch of requests
print("\n========== batch ==========\n")
batch()