-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathparameter_selection.py
261 lines (239 loc) · 10.1 KB
/
parameter_selection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""
This is a demo function for very basic grid search style parameter selction.
By default a 3 X 3 X 3 paramater space is searched and the Sprod performance is
prioritized based on the qualities of the constructed latent graph. Parameter sets
that preserve the overall spot physical struction and image similarity better will
bet ranked higher.
The running time of this small search space is a few hours on a normal PC.
You can modify this scipt to your need.
usage: parameter_selection_demo.py [-h] [--input_Rs INPUT_RS]
[--input_K INPUT_K]
[--input_Lambda INPUT_LAMBDA]
[--num_process NUM_PROCESS]
input_path
Demo function for a simple 3 x 3 x 3 pamameter grid search expecting processed
Counts.txt, features and metadata in the input folder.
positional arguments:
input_path Input folder containing all necessary files.
optional arguments:
-h, --help show this help message and exit
--input_Rs INPUT_RS, -R INPUT_RS
Input Rs, a string separated by ','. (default:
0.05,0.1,0.15)
--input_K INPUT_K, -K INPUT_K
Input Ks, a string separated by ','. (default: 3,5,10)
--input_Lambda INPUT_LAMBDA, -L INPUT_LAMBDA
Input RLambdas, a string separated by ','. (default:
5,10,15)
--num_process NUM_PROCESS, -p NUM_PROCESS
Number of sprod jobs running at the same time. (default:
4)
--overwrite, -o Whether to overwrite old outputs with the same
parameter combo. (default: False)
"""
import os
import argparse
import pandas as pd
import numpy as np
import random
from multiprocessing import Pool
from scipy.spatial.distance import cdist
def worker(cmd):
print(cmd)
os.system(cmd)
output_path = cmd.split(' ')[3]
# Remove sprod denoised outputs as those are not needed.
os.system(
'rm {}/sprod_Denoised_matrix.txt {}/sprod_Detected_graph.txt {}/sprod_Latent_space.txt'.format(
output_path, output_path, output_path
))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="Demo function for a simple 3 x 3 x 3 pamameter grid search \
expecting processed Counts.txt, features and metadata in the input folder.",
)
parser.add_argument(
"input_path", type=str, help="Input folder containing all necessary files."
)
parser.add_argument(
"output_path", type=str, help="Output folder."
)
parser.add_argument(
"--input_Rs",
"-R",
default="0.05,0.1,0.15",
type=str,
help="Input Rs, a string separated by ','.",
)
parser.add_argument(
"--input_K",
"-K",
default="3,5,10",
type=str,
help="Input Ks, a string separated by ','.",
)
parser.add_argument(
"--input_Lambda",
"-L",
default="5,10,15",
type=str,
help="Input RLambdas, a string separated by ','.",
)
parser.add_argument(
"--num_process",
"-p",
default=4,
type=int,
help="Number of sprod jobs running at the same time. ",
)
parser.add_argument(
"--overwrite",
"-o",
default=False,
action="store_true",
help="Whether to overwrite old outputs with the same parameter combo. ",
)
args = parser.parse_args()
input_path = os.path.abspath(args.input_path)
output_path = os.path.abspath(args.output_path)
Rs = args.input_Rs.split(',')
Ks = args.input_K.split(',')
Ls = args.input_Lambda.split(',')
num_process = args.num_process
overwrite = args.overwrite
# getting script path for supporting codes.
np.random.seed(0)
script_path = os.path.abspath(__file__)
sprod_path = script_path.replace('parameter_selection_demo.py', 'sprod')
sprodpy_path = script_path.replace('parameter_selection_demo', 'sprod')
sprodR_path = os.path.join(sprod_path, "denoise.R")
if not os.path.exists(output_path):
os.makedirs(output_path)
os.chdir(output_path)
# Determine if downsampling is needed
cts_fn = os.path.join(input_path, "Counts.txt")
feature_fn = os.path.join(input_path, "spot_level_intensity_features.csv")
metadata_fn = os.path.join(input_path, "Spot_metadata.csv")
# IMPORTANT!!!
# The above three files must have the same order in the rows.
# If the input is very big, will only run the sprod param demo on a random
# 5000 spots
n_spots = sum(1 for _ in open(cts_fn))
if n_spots > 10000:
print('These is more than 10000 spots. Random sample only 5000.')
subsamples = 5000
sub_idx = random.sample(range(1,n_spots), subsamples)
sub_idx.append(0)
sub_idx = sorted(sub_idx)
subsampled_input = os.path.join(input_path, 'subsampled')
if not os.path.exists(subsampled_input):
os.makedirs(subsampled_input)
for fn in [cts_fn,feature_fn,metadata_fn]:
subsampled_lines = []
with open(fn, 'r') as f:
line_n = 0
for line_n, line in enumerate(f):
if line_n in sub_idx:
subsampled_lines.append(line)
subsampled_fn = os.path.join(subsampled_input, fn.split('/')[-1])
with open(subsampled_fn,'w') as s_f:
for line in subsampled_lines:
s_f.write(line)
input_path = subsampled_input
# Preparing the Sprod jobs
if not overwrite:
print('Will not overwrite existing results.')
cmd_list = []
for R in Rs:
for K in Ks:
for L in Ls:
output_path = os.path.join(
os.path.abspath('.'), 'R-{}_K-{}_L-{}'.format(R,K,L))
if not overwrite:
if os.path.exists(
os.path.join(output_path, 'sprod_log.txt')):
print('Skip processing of {}.'.format(output_path))
continue
cmd_list.append(
'python {sprodpy_path} {input_path} {output_path} -r {R} -k {K} -l {L} -ws -dg'.format(
sprodpy_path = sprodpy_path,
input_path = input_path,
output_path = output_path,
R = R,
K = K,
L = L,
)
)
with Pool(num_process) as p:
p.map(worker, cmd_list)
# processing results, merging PDFs, this process is optionl
# Will be skipped if the required packages are not found.
try:
from PyPDF2 import PdfFileWriter, PdfFileReader, PdfFileMerger
import io
from reportlab.pdfgen import canvas
from reportlab.lib.pagesizes import letter
for pdf_name in ['Diagnose_Spatial.pdf','Diagnose_TSNE.pdf', 'Diagnose_UMAP.pdf']:
pdf_list = []
for dir in os.listdir():
if not os.path.isdir(dir):
continue
dir_files = os.listdir(dir)
if pdf_name in dir_files:
pdf_list.append(os.path.join(dir, pdf_name))
# Call the PdfFileMerger
mergedObject = PdfFileMerger()
# Loop through all of them and append their pages
for pdf_fn in sorted(pdf_list):
packet = io.BytesIO()
can = canvas.Canvas(packet, pagesize=letter)
can.drawString(100, 485, pdf_fn)
can.save()
#move to the beginning of the StringIO buffer
packet.seek(0)
# create a new PDF with Reportlab
title_pdf = PdfFileReader(packet)
# read your existing PDF
existing_pdf = PdfFileReader(open(pdf_fn, "rb"))
output = PdfFileWriter()
# add the "watermark" (which is the new pdf) on the existing page
page = existing_pdf.getPage(0)
page.mergePage(title_pdf.getPage(0))
output.addPage(page)
# finally, write "output" to a real file
outputStream = open("tmp.pdf", "wb")
output.write(outputStream)
outputStream.close()
mergedObject.append(PdfFileReader("tmp.pdf",'rb'))
# Write all the files into a file which is named as shown below
mergedObject.write('Merged ' + pdf_name)
os.system('rm tmp.pdf')
except:
print('PyPDF2 package is not found, abort pdf merging')
# getting R spatial correlations
sprod_outputs = [x for x in os.listdir('.') if os.path.isdir(x)]
df_improvements = pd.DataFrame(index = sprod_outputs)
for dir in sprod_outputs:
dir_files = os.listdir(dir)
if 'sprod_log.txt' in dir_files:
with open(os.path.join(dir,'sprod_log.txt')) as f:
for line in f:
if line.split(':')[0] == '-spatial':
spatial_v = float(line.strip('\n').split(':')[1])
df_improvements.loc[
dir,'Average Graph Distance'] = spatial_v
if line.split(':')[0] == '-image tsne':
tsne_v = float(line.strip('\n').split(':')[1])
df_improvements.loc[
dir,'Average Image Distance'] = tsne_v
print(df_improvements)
rank1 = pd.Series(
list(range(1, 1 + df_improvements.shape[0])),
index = df_improvements.sort_values('Average Graph Distance').index)
rank2 = pd.Series(
list(range(1, 1 + df_improvements.shape[0])),
index = df_improvements.sort_values('Average Image Distance').index)
df_improvements['Rank'] = (rank1 + rank2)/2
df_improvements = df_improvements.sort_values('Rank')
df_improvements.to_csv('pamameter_ranks.csv')